scholarly journals Monitoring Obstructive Sleep Apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through Differential Evolution

2014 ◽  
Vol 49 ◽  
pp. 84-100 ◽  
Author(s):  
Giovanna Sannino ◽  
Ivanoe De Falco ◽  
Giuseppe De Pietro
SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A168-A169
Author(s):  
T Le

Abstract Introduction The emphasis on disease prevention, early detection, and preventive treatments will revolutionize the way sleep clinicians evaluate their patients. Obstructive Sleep Apnea (OSA) is one of the most prevalent sleep disorders with approximately 100 millions patients been diagnosed worldwide. The effectiveness of sleep disorder therapies can be enhanced by providing personalized and real-time prediction of OSA episode onsets. Previous attempts at OSA prediction are limited to capturing the nonlinear, nonstationary dynamics of the underlying physiological processes. Methods This paper reports an investigation into heart rate dynamics aiming to predict in real time the onsets of OSA episode before the clinical symptoms appear. The method includes (a) a representation of a transition state space network to characterize dynamic transition of apneic states (b) a Dirichlet-Process Mixture-Gaussian-Process prognostic method for estimating the distribution of the time estimate the remaining time until the onset of an impending OSA episode by considering the stochastic evolution of the normal states to an anomalous (apnea) Results The approach was tested using three datasets including (1) 20 records from 14 OSA subjects in benchmark ECG apnea databases (Physionet.org), (2) records of eight subjects from previous work. The average prediction accuracy (R2) is reported as 0.75%, with 87% of observations within the 95% confidence interval. Estimated risk indicators at 1 to 3 min till apnea onset are reported as 85.8 %, 80.2 %, and 75.5 %, respectively. Conclusion The present prognosis approach can be integrated with wearable devices to facilitate individualized treatments and timely prevention therapies. Support N/A


Author(s):  
Sondre Hamnvik ◽  
Pierre Bernabé ◽  
Sagar Sen

Obstructive sleep apnea is a serious sleep disorder that affects an estimated one billion adults worldwide. It causes breathing to repeatedly stop and start during sleep which over years increases the risk of hypertension, heart disease, stroke, Alzheimer's, and cancer. In this demo, we present Yolo4Apnea a deep learning system extending You Only Look Once (Yolo) system to detect sleep apnea events from abdominal breathing patterns in real-time enabling immediate awareness and action. Abdominal breathing is measured using a respiratory inductance plethysmography sensor worn around the stomach. The source code is available at https://github.com/simula-vias/Yolo4Apnea


Sign in / Sign up

Export Citation Format

Share Document