Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: A fluid–structure interaction approach

2009 ◽  
Vol 42 (12) ◽  
pp. 1952-1960 ◽  
Author(s):  
Umberto Morbiducci ◽  
Raffaele Ponzini ◽  
Matteo Nobili ◽  
Diana Massai ◽  
Franco Maria Montevecchi ◽  
...  
Author(s):  
Umberto Morbiducci ◽  
Raffaele Ponzini ◽  
Matteo Nobili ◽  
Diana Massai ◽  
Franco M. Montevecchi ◽  
...  

Altered haemodynamics are implicated in the blood cells damage that leads to thromboembolic complications in presence of prosthetic cardiovascular devices, with platelet activation being the underlying mechanism for cardioemboli formation in blood flow past mechanical heart valves (MHVs). Platelet activation can be initiated and maintained by flow patterns arising from blood flowing through the MHV, and can lead to an enhancement in the aggregation of platelets, increasing the risk for thromboemboli formation. Hellums and colleagues compiled numerous experimental results to depict a locus of incipient shear related platelet activation on a shear stress – exposure time plane, commonly used as a standard for platelet activation threshold [1]. However, platelet activation and aggregation is significantly greater under pulsatile or dynamic condition relative to exposure to constant shear stress [2]. Previous studies do not allow to determine the relationship existing between the measured effect — the activation of a platelet, and the cause — the time-varying mechanical loading, and the time of exposure to it as might be expected in vivo when blood flows through the valve. The optimization of the thrombogenic performance of MHVs could be facilitated by formulating a robust numerical methodology with predictive capabilities of flow-induced platelet activation. To achieve this objective, it is essential (i) to quantify the link between realistic valve induced haemodynamics and platelet activation, and (ii) to integrate theoretical, numerical, and experimental approaches that allow for the estimation of the thrombogenic risk associated with a specific geometry and/or working conditions of the implantable device. In this work, a comprehensive analysis of the Lagrangian systolic dynamics of platelet trajectories and their shear histories in the flow through a bileaflet MHV is presented. This study uses information extracted from the numerical simulations performed to resolve the flow field through a realistic model of MHV by means of an experimentally validated fluid-structure interaction approach [3]. The potency of the device to mechanically induce activation/damage of platelets is evaluated using a Lagrangian-based blood damage cumulative model recently identified using in vitro platelet activity measurements [4,5].


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Annalisa Dimasi ◽  
Daniela Piloni ◽  
Laura Spreafico ◽  
Emiliano Votta ◽  
Riccardo Vismara ◽  
...  

Prosthetic valve thrombosis (PVT) is a serious complication affecting prosthetic heart valves. The transvalvular mean pressure gradient (MPG) derived by Doppler echocardiography is a crucial index to diagnose PVT but may result in false negatives mainly in case of bileaflet mechanical valves (BMVs) in mitral position. This may happen because MPG estimation relies on simplifying assumptions on the transvalvular fluid dynamics or because Doppler examination is manual and operator dependent. A deeper understanding of these issues may allow for improving PVT diagnosis and management. To this aim, we used in vitro and fluid–structure interaction (FSI) modeling to simulate the function of a real mitral BMV in different configurations: normally functioning and stenotic with symmetric and completely asymmetric leaflet opening, respectively. In each condition, the MPG was measured in vitro, computed directly from FSI simulations and derived from the corresponding velocity field through a Doppler-like postprocessing approach. Following verification versus in vitro data, MPG computational data were analyzed to test their dependency on the severity of fluid-dynamic derangements and on the measurement site. Computed MPG clearly discriminated between normally functioning and stenotic configurations. They did not depend markedly on the site of measurement, yet differences below 3 mmHg were found between MPG values at the central and lateral orifices of the BMV. This evidence suggests a mild uncertainty of the Doppler-based evaluation of the MPG due to probe positioning, which yet may lead to false negatives when analyzing subjects with almost normal MPG.


Author(s):  
P. Brousseau ◽  
M. Benaouicha ◽  
S. Guillou

This paper deals with the dynamics of an oscillating foil, describing a free heaving (vertical displacement) and prescribed pitching (rotational displacement) movement which is computed from its position in two different ways. A fluid-structure interaction approach is chosen, as the physics of the flow and the structure are strongly coupled. The flow is unsteady, turbulent and incompressible. The pressure/velocity problem is solved using SIMPLEC scheme. First, the pitching movement is considered as a given continuous function of the hydrofoil heaving position. Second, the pitching motion is performed alternately at the end of each heave cycle. For each case, two maximum angles of attack and one heaving amplitudes are studied. Preliminary results showed that a high maximum angle of attack generates more lift hydrodynamics force, but also requires more energy to perform the rotation of pitch.


Sign in / Sign up

Export Citation Format

Share Document