maximum angle
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 75)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 1 (1) ◽  
pp. 56-62
Author(s):  
Vladimir Volkov ◽  
Evgenii Lebedev ◽  
Elena Nabatnikova

The analysis of changes in the dynamic characteristics of the transport operation of a trunk road train in road conditions with overcoming sections of obstructed traffic characterized by the presence of steep ascents is considered. The solution of the problem under consideration is presented in the variants of determining the maximum angle of elevation of the road that can be overcome by a road train with the specified operational characteristics and the cost of engine power spent on overcoming these road sections.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 460
Author(s):  
Yunli Nie ◽  
Dalei Song ◽  
Zhenyu Wang ◽  
Yan Huang ◽  
Hua Yang

The use of a multi-functional autonomous underwater vehicle (AUV) as a platform for making turbulence measurements in the ocean is developed. The layout optimization of the turbulence package and platform motion performance are limitation problems in turbulent AUV design. In this study, the computational fluid dynamics (CFD) method has been used to determine the optimized layout position and distance of the shear probe integrated into an AUV. When placed 0.8 D ahead of the AUV nose along the axis, the shear probe is not influenced by flow distortion and can contact the water body first. To analyze the motion of the turbulence AUV, the dynamic model of turbulence AUV for planar flight is obtained. Then, the mathematical equations of speed and angle of attack under steady-state motion have also been obtained. By calculating the hydrodynamic coefficients of the turbulence AUV and given system parameters, the simulation analysis has been conducted. The simulation results demonstrated that the speed of turbulent AUV is 0.5–1 m/s, and the maximum angle of attack is less than 6.5°, which meets the observation requirements of the shear probe. In addition, turbulence AUV conducted a series of sea-trials in the northern South China Sea to illustrate the validity of the design and measurement. Two continuous profiles (1000 m) with a horizontal distance of 10 km were completed, and numerous high-quality spatiotemporal turbulence data were obtained. These profiles demonstrate the superior flight performance of turbulence AUV. Analysis shows that the measured data are of high quality, with the shear spectra being in very good agreement with the Nasmyth spectrum. Dissipation rates are consistent with background shear. When shear velocity is weak, the measurement of dissipation rate is 10−10 W Kg−1. All indications are that the turbulence AUV is suitable for long-term, contiguous ocean microstructure measurements, which will provide data needed to understand the temporal and spatial variability of the turbulent processes in the oceans.


2021 ◽  
pp. 0734242X2110667
Author(s):  
Hongjun Sun ◽  
Erchong Gao ◽  
Aipeng Zhou

After the landfill site is sealed, the uneven settlement is related to the safety of reutilisation of the site, and it is critical to calculate the uneven settlement of the site without error. In this article, the soil parameter of garbage body was changed with biodegradation. Fast Lagrangian Analysis of Continua in three dimensions (FLAC 3D) numerical simulation was applied to the settlement of the landfill site closure. In calculating the settlement of landfill, the soil parameters of landfill with age were obtained by field drilling experiments. The parameters can reflect the characteristics of soil organic matter in different biodegradation stages. Finally, the uneven settlement within 20 years of the closure period was obtained by the numerical simulation taking Jinzhou Nanshan landfill as an example. The results show that the settlement with the age increases gradually, but the rate will be more and more moderate, and the maximum subsidence value in the sealing field after 20 years will be 9.11 m, 15.71% of the maximum elevation. Around the landfill slope position of uneven settlement rate is bigger, and the maximum angle of uneven settlement is up to 45°. But the middle position is small, which is close to 0°.


2021 ◽  
Vol 13 (2) ◽  
pp. 89-97
Author(s):  
Khoirudin Fathoni ◽  
Ababil Panji Pratama ◽  
Nur Azis Salim ◽  
Vera Noviana Sulistyawan

Self balancing robot is a two-wheeled robot that only has two fulcrums so that this robot is an unbalanced system. Therefore, a control system that can maintain the stability of the robot is needed so that the robot can keep in standing position. This study aims to design a self-balancing robot and its control system which improves the robot's performance against the maximum angle of disturbance that can be overcome. The control system used is based on fuzzy logic with 9 membership functions and 81 rules. The control system is applied to the ESP-32 microcontroller with the MPU-6050 sensor as a feedback position of the robot and DC motor as an actuator. Complementary filters are added to the MPU-6050 sensor readings to reduce noise to obtain better robotic tilt angle readings. The improvement of this research compared to previous research based on fuzzy is the addition of the number of membership functions from 7 to 9 and the embedding of a complementary filter on the MPU-6050 sensor output reading. The result shows that the designed self balancing robot which has dimensions of 10cm x 18cm x 14.5cm can cope with the maximum disturbance angle up to 17.5⁰.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hongbo Liu ◽  
Guodong Sun ◽  
Dexu Geng ◽  
Junye Li

An antagonistic pneumatic bidirectional rotary flexible joint was developed to improve both safety and environmental adaptability of service robots and associated human interactions. The joint comprises two semicircular rotary actuators with positive and negative symmetrical distributions and a pneumatic brake. As such, it achieves forward and reverse rotations, and its damping and braking are adjustable in real time, enabling it to maintain its position. According to the force/torque balance at the free end of the rotary actuator, the rotation angle static model was established. The relationship between the actuator rotation angle, driving torque, impedance torque, and air pressure was obtained experimentally. The brake airbag was manufactured using additive manufacturing and silicone gel casting technologies. The mathematical model of the braking torque was established next, and the model was verified through experiments. Furthermore, an experimental system was constructed to carry out the air pressure-angle, air pressure-torque, and speed response experiments without the load on the joint. The results have shown that the joint can achieve any position within ± 68.5° when the driving air pressure varies from 0 to 0.30 MPa; the time required to reach the maximum angle was 0.85 s. The joint has shown good adjustable damping characteristics. Lastly, the braking torque reached 4.21 Nm at 0.32 MPa, effectively maintaining the position.


2021 ◽  
Vol 99 ◽  
pp. 323-328
Author(s):  
Hiroki Ishizaka ◽  
Kenta Kobayashi ◽  
Ryo Suzuki ◽  
Takuya Tsuchiya

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1131
Author(s):  
Jinwon Jeong ◽  
Sangkug Chung ◽  
Jeong-Bong Lee ◽  
Daeyoung Kim

A gallium-based liquid metal got high attention recently, due to the excellent material properties that are useful in various research areas. We report here on electric field-induced liquid metal droplet generation and falling direction manipulation. The well-analyzed electro-hydrodynamic method is a selectable way to control the liquid metal, as the liquid metal is conductive. The electric field-induced liquid metal manipulation can be affected by the flow rate (0.05~0.2 mL/min), voltage (0~7 kV), and distance (15 and 30 mm) between electrodes, which changes the volume of the electric field-induced generated liquid metal droplet and the number of the generated droplets. When the electric field intensity increases or the flow rate increases, the generated droplet volume decreases, and the number of droplets increases. With the highest voltage of 7 kV with 15 mm between electrodes at the 0.2 mL/min flow rate, the lowest volume and the largest number of the generated droplets for 10 s were ~10 nL and 541, respectively. Additionally, we controlled the direction of the generated droplet by changing the electric field. The direction of the liquid metal droplet was controlled with the maximum angle of ~12°. Moreover, we exhibited a short circuit demonstration by controlling the volume or falling direction of the generated liquid metal droplet with an applied electric field.


2021 ◽  
Author(s):  
VINCENT K. MAES ◽  
BASSAM ELSAID ◽  
STEPHEN R. HALLETT ◽  
JAMES KRATZ

The study of defects and their influence on the performance of composite structures is well documented. However, simplifications are often made regarding the morphology of these defects. As part of the CerTest project, a database of composite features and defects is being built, for which an assessment must be made of what information is relevant. This study looks specifically at out-of-plane waviness and seeks to investigate whether the commonly used severity metrics (e.g. maximum angle) are sufficient to characterize such defects when considering more complex morphologies. To assess this, previously developed numerical methods are used to investigate the tensile and compressive strength of cross-ply and quasi-isotropic laminates. These laminates are seeded with asymmetrical out-of-plane waviness. The numerical results demonstrate that for reliable prediction of the strength reduction caused by out-of-plane waviness, the asymmetry is an important consideration with relative reductions from symmetric to asymmetric wrinkle of up to 50% found within the wrinkles evaluated in this study.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ahmed Hadj Henni ◽  
David Gensanne ◽  
Maximilien Roge ◽  
Chantal Hanzen ◽  
Guillaume Bulot ◽  
...  

Abstract Background The objective of this study was to analyze the amplitude of translational and rotational movements occurring during stereotactic body radiotherapy (SBRT) of spinal metastases in two different positioning devices. The relevance of intra-fractional imaging and the influence of treatment time were evaluated. Methods Twenty patients were treated in the supine position either (1) on a body vacuum cushion with arms raised and resting on a clegecel or (2) on an integrated SBRT solution consisting of a SBRT table top, an Orfit™ AIO system, and a vacuum cushion. Alignments between the cone beam computed tomography (CBCT) and the planning computed tomography allowed corrections of inter- and intra-fraction positional shifts using a 6D table. The absolute values of the translational and rotational setup errors obtained for 329 CBCT were recorded. The translational 3D vector, the maximum angle, and the characteristic times of the treatment fractions were calculated. Results An improvement in the mean (SD) inter-fraction 3D vector (mm) from 7.8 (5.9) to 5.9 (3.8) was obtained by changing the fixation devices from (1) to (2) (p < 0.038). The maximum angles were less than 2° for a total of 87% for (1) and 96% for (2). The mean (SD) of the intra-fraction 3D vectors (mm) was lower for the new 1.1 (0.8) positioning fixation (2) compared to the old one (1) 1.7 (1.7) (p = 0.004). The angular corrections applied in the intra-fraction were on average very low (0.4°) and similar between the two systems. A strong correlation was found between the 3D displacement vector and the fraction time for (1) and (2) with regression coefficients of 0.408 (0.262–0.555, 95% CI) and 0.069 (0.010–0.128, 95% CI), respectively. An accuracy of 1 mm would require intra-fraction imaging every 5 min for both systems. If the expected accuracy was 2 mm, then only system (2) could avoid intra-fractional imaging. Conclusions This study allowed us to evaluate setup errors of two immobilization devices for spine SBRT. The association of inter- and intra-fraction imaging with 6D repositioning of a patient is inevitable. The correlation between treatment time and corrections to be applied encourages us to move toward imaging modalities which allow a reduction in fraction time.


2021 ◽  
Vol 7 ◽  
Author(s):  
Sae Homma ◽  
Kunihiko Nabeshima ◽  
Izuru Takewaki

An explicit limit for the overturning of a rigid block is derived on the input level of the triple impulse and the pseudo-triple impulse as a modified version of the triple impulse that are a substitute of a near-fault forward-directivity ground motion. The overturning behavior of the rigid block is described by applying the conservation law of angular momentum and the conservation law of mechanical energy (kinetic and potential). The initial velocity of rotation after the first impulse and the change of rotational velocity after the impact on the floor due to the movement of the rotational center are determined by using the conservation law of angular momentum. The maximum angle of rotation after the first impulse is obtained by the conservation law of mechanical energy. The change of rotational velocity after the second impulse is also characterized by the conservation law of angular momentum. The maximum angle of rotation of the rigid block after the second impulse, which is mandatory for the computation of the overturning limit, is also derived by the conservation law of mechanical energy. This allows us to prevent from computing complex non-linear time-history responses. The critical timing of the second impulse (also the third impulse timing to the second impulse) is featured by the time of impact after the first impulse. As in the case of the double impulse, the action of the second impulse just after the impact is employed as the critical timing. It is induced from the explicit expression of the critical velocity amplitude limit of the pseudo-triple impulse that its limit is slightly larger than the limit for the double impulse. Finally, it is found that, when the third impulse in the triple impulse is taken into account, the limit input velocity for the overturning of the rigid block becomes larger than that for the pseudo-triple impulse. This is because the third impulse is thought to prevent the overturning of the rigid block by giving an impact toward the inverse direction of the vibration of the rigid block.


Sign in / Sign up

Export Citation Format

Share Document