Design and characterization of a simulated immobilized enzyme system for raffinose removal in beet molasses

2007 ◽  
Vol 131 (2) ◽  
pp. S78-S79 ◽  
Author(s):  
Masoud Fallahpour ◽  
Saeed Mirdamadi ◽  
Mohammad Reza Bakhtiari
Author(s):  
Elizama Aguiar-Oliveira ◽  
Francisco Maugeri

The fructosyltransferase from Rhodotorula sp. recovered from a fermented medium, by precipitation was immobilized by adsorption onto niobium ore. Considering the biocatalyst system, the activity/pH profile moved towards more alkaline values as compared to the free enzyme system, indicating that the support affected the charge distribution between the enzyme and the support. The immobilized enzyme showed high activity and good stability at pH values of 4.5 and 6.0. The biocatalyst half-lives at 48 °C and pH values of 4.5 and 6.0 were 32 and 72 days, respectively. The kinetics for the immobilized system corresponded to that of substrate inhibition. The synthesis of fructooligosaccharides from 50% sucrose solutions was carried out in batch stirred reactors and the conversion was about 58%, similar to that with the free enzyme. Based on the biocatalyst activity, stability and process yields, the system developed in this work can be considered suitable for application in large-scale bioreactors.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 511 ◽  
Author(s):  
Sara Arana-Peña ◽  
Yuliya Lokha ◽  
Roberto Fernández-Lafuente

Eversa is an enzyme recently launched by Novozymes to be used in a free form as biocatalyst in biodiesel production. This paper shows for first time the immobilization of Eversa (a commercial lipase) on octyl and aminated agarose beads and the comparison of the enzyme properties to those of the most used lipase, the isoform B from Candida antarctica (CALB) immobilized on octyl agarose beads. Immobilization on octyl and aminated supports of Eversa has not had a significant effect on enzyme activity versus p-nitrophenyl butyrate (pNPB) under standard conditions (pH 7), but immobilization on octyl agarose beads greatly enhanced the stability of the enzyme under all studied conditions, much more than immobilization on aminated support. Octyl-Eversa was much more stable than octyl-CALB at pH 9, but it was less stable at pH 5. In the presence of 90% acetonitrile or dioxane, octyl-Eversa maintained the activity (even increased the activity) after 45 days of incubation in a similar way to octyl-CALB, but in 90% of methanol, results are much worse, and octyl-CALB became much more stable than Eversa. Coating with PEI has not a clear effect on octyl-Eversa stability, although it affected enzyme specificity and activity response to the changes in the pH. Eversa immobilized octyl supports was more active than CALB versus triacetin or pNPB, but much less active versus methyl mandelate esters. On the other hand, Eversa specificity and response to changes in the medium were greatly modulated by the immobilization protocol or by the coating of the immobilized enzyme with PEI. Thus, Eversa may be a promising biocatalyst for many processes different to the biodiesel production and its properties may be greatly improved following a suitable immobilization protocol, and in some cases is more stable and active than CALB.


Sign in / Sign up

Export Citation Format

Share Document