Rhizosphere biodegradation studies on long-term PCB contaminated soil; isolation and characterization of different rhizosphere microbial communities from PCBs soil

2007 ◽  
Vol 131 (2) ◽  
pp. S236-S237 ◽  
Author(s):  
Marieta Ionescu ◽  
Katarina Beranova ◽  
Lucia Kochankova ◽  
Katerina Demnerova ◽  
Tomas Macek ◽  
...  
1984 ◽  
Vol 68 (1) ◽  
pp. 305-319
Author(s):  
S.J. Goss

‘77orn’, a derivative of the Morris rat hepatoma 7777, stably expresses high levels of ornithine transcarbamoylase (OTC) and carbamoylphosphate synthetase I (CPS-I), and is able to grow indefinitely in ornithine-medium (medium with ornithine in place of arginine). Variants that have lost this ability are isolated from 77orn by a ‘suicide’ selective technique dependent on the cellular incorporation of [3H]ornithine. These variants, which have reduced levels of CPS-I, or of both CPS-I and OTC, are shown to have developed multiple hormonal requirements; their enzyme deficiencies can be reversed by use of an appropriately supplemented medium. In particular, CPS-I is inducible by dexamethasone and dibutyryl-cyclic-AMP in combination. Cholera toxin can be used instead of cyclic-AMP, but then butyrate is additionally required if the induction is to be maintained in the long term. The use of these agents in excess can depress OTC. Several other hepatomas, and alos explanted foetal rat liver cells, have similar requirements for CPS-I expression. It is argued that multiple hormonal requirements for CPS-I production are normal in liver cells in vitro, and that hormone-independent hepatomas should be regarded as abnormal. The implications of this for the somatic cell genetic investigation of differentiation are briefly discussed.


2013 ◽  
Vol 263 ◽  
pp. 493-500 ◽  
Author(s):  
Kanaji Masakorala ◽  
Jun Yao ◽  
Minmin Cai ◽  
Radhika Chandankere ◽  
Haiyan Yuan ◽  
...  

2015 ◽  
Vol 11 ◽  
pp. 223-231 ◽  
Author(s):  
Abdul Wahab ◽  
◽  
Talat Mujahid ◽  
Safia Padhiar ◽  
Syed Subhan ◽  
...  

2011 ◽  
Vol 356-360 ◽  
pp. 1152-1163 ◽  
Author(s):  
Le Bin Yin ◽  
Yong Liu ◽  
De Yong Zhang ◽  
Song Bai Zhang

A bacterial strain S9-1capable of degrading sulfonylurea herbicide pyrazosulfuron-ethyl (PSE) was isolated from contaminated soil through the enrichment incubation method. Based on morphology, colony and cultural properties, physiological and biochemical characteristics, living-cell absorption spectra, internal photosynthetic membrane, and phylogenetics of its 16S rRNA gene sequence, S9-1was preliminarily identified as belonging to the genus Rhodopseudomonas, a group of photosynthetic bacteria (PSB). The effects of PSE concentration, pH, and temperature on biodegradation were examined. The degradation rate was found to decrease with increasing PSE concentration. Optimal growth pH and temperature were found to be 7.0 and 30°C, respectively. The strain was able to degrade 47.51% of PSE at a concentration of 100 mg ml-1after 7 days of incubation at 30°C and could tolerate 800 mg ml-1PSE. S9-1was also able to completely co-metabolically transform 100 mg ml-1PSE at 30°C, pH 7.0, and 7500 lux in 15 days. As the concentration of PSE increased, the degradation process took longer to complete. The fragment encoding acetolactate synthase (ALS) gene from S9-1was cloned and sequenced. Comparison of deduced amino acid sequences was implemented, and the conserved sites were analyzed. To our knowledge, this is the first report of PSB in PSE biodegradation. These results highlight the potential of this bacterium as a detoxifying agent for use with PSE-contaminated soil and wastewater.


2017 ◽  
Vol 22 (2) ◽  
pp. 186-194 ◽  
Author(s):  
M. Govarthanan ◽  
R. Mythili ◽  
T. Selvankumar ◽  
S. Kamala-Kannan ◽  
Dubok Choi ◽  
...  

2019 ◽  
Vol 40 (3) ◽  
pp. 275-282
Author(s):  
P.K. Çevik ◽  
◽  
A.B. Eroğlu ◽  
G. Yildizli ◽  
D. Coşan ◽  
...  

2021 ◽  
pp. e313
Author(s):  
Tanvir Ahmed ◽  
Sababa Alam ◽  
Tasnia Ahmed

Petroleum products are used for energy production and an essential part of our day-to-day lives especially in vehicles, ships, and industries. Accidental leakages occur easily and wastage petroleum is also discarded in the environment without any further processing causing environmental pollution. Diesel contributea big part topetroleum pollution. The current study was aimed to identify diesel degrading bacteria and determine some conditions to evaluate their best degradation capability. We identified Aeromonas spp., Bacillus spp., and Enterobacter spp. from diesel contaminated soil and found that Aeromonas spp. and Bacillus spp. grow best with 10% to 15% diesel whereas Enterobacter spp. can grow quite well with 20% diesel concentration at a higher temperature (40oC) than the previous two bacteria. Aeromonas spp. worked well at low pH (pH 4 to pH 6) whereas Bacillus spp. and Enterobacter spp. worked best at higher pH (pH 10).


Sign in / Sign up

Export Citation Format

Share Document