Reaction pathway of the reduction by CO under dry conditions of NOx species stored onto PtBa/Al2O3 Lean NOx Trap catalysts

2010 ◽  
Vol 274 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Pio Forzatti ◽  
Luca Lietti ◽  
Isabella Nova ◽  
Sara Morandi ◽  
Federica Prinetto ◽  
...  
2012 ◽  
Vol 184 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Do Heui Kim ◽  
K. Mudiyanselage ◽  
J. Szányi ◽  
H. Zhu ◽  
J.H. Kwak ◽  
...  
Keyword(s):  
Nox Trap ◽  

2010 ◽  
Vol 3 (2) ◽  
pp. 414-424 ◽  
Author(s):  
Alexis Manigrasso ◽  
PIerre Darcy ◽  
Patrick Da Costa

MTZ worldwide ◽  
2018 ◽  
Vol 79 (3) ◽  
pp. 64-69
Author(s):  
Michael Maurer ◽  
Thomas Fortner ◽  
Peter Holler ◽  
Helmut Eichlseder

Author(s):  
Michael Maurer ◽  
T. Fortner ◽  
P. Holler ◽  
S. Zarl ◽  
H. Eichlseder
Keyword(s):  
Nox Trap ◽  

2011 ◽  
Author(s):  
Angelo Algieri ◽  
Sergio Bova ◽  
Carmine De Bartolo ◽  
Alessandra Nigro

Author(s):  
Shawn Midlam-Mohler ◽  
Yann Guezennec

The management of an automotive Lean NOx Trap (LNT) catalyst requires periodic, brief periods of net rich exhaust to regenerate the catalyst by reducing the stored NOx. During the regeneration event, the fuel rich gas first affects the front of the catalyst then, as reductants are available, reach the downstream sections of the catalyst. In a typical engine test cell, it is not feasible to witness these distributed effects by simultaneously measuring multiple points in a catalyst bed due for a number of practical reasons. This is inconvenient because it is often desired to have a continuous or distributed lump model of the catalyst, which is difficult to calibrate without spatially and temporally resolved measurements. A novel measurement technique is presented which uses internal catalyst temperature measurements to detect the gross chemical reactions occurring in the catalyst during the rich reduction phase. The magnitude of the temperature change is shown to correlate with the mass of NOx and O2 reduced from the catalyst substrate. This information is available at each temperature measurement location, allowing spatial information to be collected non-intrusively. Furthermore, the technique contains temporal information regarding the key reactions. The type of information made available, as well as the convenience of the measurement system, makes the technique useful for a number of applications. The basis of the measurement technique is first presented from a theoretical basis, relating the temperature rise of the substrate to the various gross chemical reactions. Experimental validation of the method is then provided, illustrating the good correlation between the mass of stored NOx and O2 estimated by the method and the mass of stored NOx calculated from traditional gas analyzer measurements during the NOx storage phase. After demonstrating the applicability of the method, several applications are suggested including use of the technique for LNT modeling, LNT regeneration control, and sulfur poisoning detection.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2127 ◽  
Author(s):  
Marcos Schöneborn ◽  
Thomas Harmening ◽  
Javier Giménez-Mañogil ◽  
Juan Carlos Martínez-Munuera ◽  
Avelina García-García

Ceria/spinel-based lean NOx trap compositions with and without barium were modified with MnOx via incipient wetness impregnation. The effect of the MnOx layer on the aged materials (850 °C) as to the NOx storage and release properties was investigated via NOx adsorption (500 ppm NO/5% O2/balance N2) carried out at 300 °C in a dual-bed with a 1% Pt/Al2O3 catalyst placed upstream of the samples to generate sufficient amounts of NO2 required for efficient NOx storage. Subsequent temperature programmed desorption (TPD) experiments were carried out under N2 from 300 °C to 700 °C. The addition of MnOx to the barium free composition led to a slightly reduced NOx storage capacity but all of the ad-NOx species were released from this material at significantly lower temperatures (ΔT ≈ 100 °C). The formation of a MnOx layer between ceria/spinel and barium had a remarkable effect on ageing stability as the formation of BaAl2O4 was suppressed in favour of BaMnO3. The presence of this phase resulted in an increased NOx storage capacity and lower desorption temperatures. Furthermore, NOx adsorption experiments carried out in absence of the Pt-catalyst also revealed an unexpected high NOx storage ability at low NO2/NO ratios, which could make this composition suitable for various lean NOx trap catalysts (LNT) related applications.


Sign in / Sign up

Export Citation Format

Share Document