Struvite precipitation from biogas digestion slurry using a two-chamber electrolysis cell with a magnesium anode

2018 ◽  
Vol 174 ◽  
pp. 1598-1607 ◽  
Author(s):  
Xiaochang Lin ◽  
Zhiying Han ◽  
Hongjun Yu ◽  
Zhangying Ye ◽  
Songming Zhu ◽  
...  
2003 ◽  
Vol 129 (5) ◽  
pp. 419-426 ◽  
Author(s):  
James D. Doyle ◽  
Kath Oldring ◽  
John Churchley ◽  
Colin Price ◽  
Simon A. Parsons

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1221
Author(s):  
Domenico Frattini ◽  
Gopalu Karunakaran ◽  
Eun-Bum Cho ◽  
Yongchai Kwon

The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tian-Lei Zhao ◽  
Han Li ◽  
Hao-Fan Jiang ◽  
Qi-Zhi Yao ◽  
Ying Huang ◽  
...  

AbstractBacteria are able to induce struvite precipitation, and modify struvite morphology, leading to the mineral with various growth habits. However, the relevant work involving the morphogenesis is limited, thereby obstructing our understanding of bacterially mediated struvite mineralization. Here, an actinomycete Microbacterium marinum sp. nov. H207 was chosen to study its effect on struvite morphology. A combination of bacterial mineralization and biomimetic mineralization techniques was adopted. The bacterial mineralization results showed that strain H207 could induce the formation of struvite with grouping structure (i.e., a small coffin-like crystal grown on a large trapezoid-like substrate crystal), and the overgrowth structure gradually disappeared, while the substrate crystal further evolved into coffin-like, and quadrangular tabular morphology with time. The biomimetic experiments with different organic components confirmed that the soluble macromolecules rich in electronegative carboxyl groups secreted by strain H207 dominate the formation of the struvite grouping. The time-course biomimetic experiments with supernatant testified that the increase in pH and NH4+ content promoted the evolution of crystal habits. Moreover, the evolution process of substrate crystal can be divided into two stages. At the first stage, the crystal grew along the crystallographic b axis. At the later stage, coupled dissolution–precipitation process occurred, and the crystals grew along the corners (i.e., [110] and [1-10] directions). In the case of dissolution, it was also found that the (00-1) face of substrate crystal preferentially dissolved, which results from the low initial phosphate content and high PO43− density on this face. As a result, present work can provide a deeper insight into bio-struvite mineralization.


1991 ◽  
Vol 254 (1-2) ◽  
pp. 223-234 ◽  
Author(s):  
T.G. Crowther ◽  
A.P. Wade ◽  
P.D. Wentzell ◽  
R. Gopal

Sign in / Sign up

Export Citation Format

Share Document