microbial electrolysis cell
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 158)

H-INDEX

52
(FIVE YEARS 12)

2022 ◽  
Vol 334 ◽  
pp. 08006
Author(s):  
Martí Aliaguilla ◽  
Daniele Molognoni ◽  
Pau Bosch-Jimenez ◽  
Eduard Borràs

Industrial activity has resulted in heavy metals anthropogenic contamination of groundwater, especially in industrial or mining areas. Bioelectrochemical systems (BES) can be used for metals removal and recovery from aqueous solutions. In the framework of GREENER project, double-chamber BES have been adopted to treat groundwater from industrial sites containing copper, nickel and zinc (Cu, Ni and Zn), among other contaminants. Two operation modes, (i) short-circuited microbial fuel cell (MFC), and (ii) power supply driven microbial electrolysis cell (MEC, poisoning the cathode at -0.4 V vs. Ag/AgCl), were studied for metals removal at lab-scale. Two control reactors were run to evaluate metals adsorption on cathodes and membranes, and the effect of anolyte composition. Synthetic water containing different concentrations of Cu, Ni and Zn were treated, and metals removal pathways were studied. MEC and MFC performed similarly and the highest removal efficiencies were 97.1±3.6%, 50.7±6% and 74,5% for Cu, Ni and Zn respectively, from initial concentrations in the range of 1.1-1.5 mM.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8375
Author(s):  
Ilias Apostolopoulos ◽  
Georgios Bampos ◽  
Amaia Soto Beobide ◽  
Stefanos Dailianis ◽  
George Voyiatzis ◽  
...  

The aim of the study was to assess the effect of anode materials, namely a carbon nanotube (CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber microbial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics. The experiments were performed using both acetate-based synthetic wastewater and real wastewater, specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the better colonization of the CP electrode with electroactive microorganisms, due to the negative effects of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate, a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step, to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is provided, combining sustainable bioenergy generation together with wastewater treatment, a fact that is also reinforced by the toxicity data of the current study.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1916
Author(s):  
Míriam Cerrillo ◽  
Laura Burgos ◽  
Joan Noguerol ◽  
Victor Riau ◽  
August Bonmatí

Ammonia and phosphate, which are present in large quantities in waste streams such as livestock manure, are key compounds in fertilization activities. Their recovery will help close natural cycles and take a step forward in the framework of a circular economy. In this work, a lab-scale three-chambered microbial electrolysis cell (MEC) has been operated in continuous mode for the recovery of ammonia and phosphate from digested pig slurry in order to obtain a nutrient concentrated solution as a potential source of fertilizer (struvite). The maximum average removal efficiencies for ammonium and phosphate were 20% ± 4% and 36% ± 10%, respectively. The pH of the recovered solution was below 7, avoiding salt precipitation in the reactor. According to Visual MINTEQ software modelling, an increase of pH value to 8 outside the reactor would be enough to recover most of the potential struvite (0.21 mmol L−1 d−1), while the addition of up to 0.2 mM of magnesium to the nutrient recovered solution would enhance struvite production from 5.6 to 17.7 mM. The application of three-chambered MECs to the recovery of nutrients from high strength wastewater is a promising technology to avoid ammonia production through industrial processes or phosphate mineral extraction and close nutrient natural cycles.


Sign in / Sign up

Export Citation Format

Share Document