Optimal design and operation of energy storage systems and generators in the network installed with wind turbines considering practical characteristics of storage units as design variable

2018 ◽  
Vol 185 ◽  
pp. 680-693 ◽  
Author(s):  
Reza Hemmati
2021 ◽  
Vol 61 (2) ◽  
pp. 563
Author(s):  
Hamed Sharafizad

For any facility, reliability and availability of power are key. Traditional gas- or diesel-driven power generation designs for facilities rely on generated spinning reserve to achieve power system stability and availability for defined operational scenarios and expected transients. Spinning reserve is extra generating capacity that is usually introduced by running additional power generator(s). Battery energy storage systems (BESSs) as energy storage units provide for a virtual spinning reserve in a hot standby arrangement to achieve the same effect for a set period during operating scenarios and transient events. Use of BESS technology is becoming more frequent within electrical network systems, remote sites and industrial facilities on the back of improved battery technology. This lends itself to better BESS reliability, effectiveness and lower associated cost to procure and install. Many of Clough’s projects are remote and islanded where they need to be self-sufficient, generating and distributing their own power needs. BESS units are scalable energy storage systems that can be used as a part of power generation solutions for facilities installed onshore or offshore. In addition to supplementing the primary generation on a facility as static storage units, BESS units offer benefits such as reduced emissions on facilities by not burning fossil fuels to achieve spinning reserve; they also allow for power management of generation systems, store any excess power from primary generators, allow for integration of renewables, offer constructability benefits and reduced operational/maintenance costs. The commercial and environmental benefits of BESS units are key drivers in Clough’s decision to embrace their use on future projects.


Author(s):  
Ilker Durukan ◽  
Stephen Ekwaro-Osire ◽  
Stephen B. Bayne

Most recent grid codes require wind turbines to contribute to the recovery of frequency drops in the grid. More of the recently build wind turbines use variable speed generators. Unlike fixed speed generators, these generators do not naturally contribute to the recovery of the frequency drop since the rotor rpm is decoupled from the grid frequency. This decoupling is achieved by controller and power conditioning units. The studies reviewed in this paper focused on the design of such a controller so that the wind turbine could react to frequency drops. Another approach to responding to frequency drops is to connect an energy storage system to the DC bus of variable speed generator. Flywheels have been used as energy storage systems to fill energy gaps in several applications and can be used for frequency recovery application for wind turbines as well. The objective of this study was to demonstrate the improvement of frequency stability of wind turbines connected to electrical grids in the presence of flywheel energy storage systems (FESS). Studies reviewed show that FESS can enhance the power quality and frequency stability of wind turbines connected to an electrical grid.


2020 ◽  
Vol 265 ◽  
pp. 114769 ◽  
Author(s):  
E. Pérez-Iribarren ◽  
I. González-Pino ◽  
Z. Azkorra-Larrinaga ◽  
I. Gómez-Arriarán

Sign in / Sign up

Export Citation Format

Share Document