Domestic hot water technology transition for solar thermal systems: An assessment for the urban areas of Maputo city, Mozambique

2020 ◽  
Vol 260 ◽  
pp. 121043 ◽  
Author(s):  
Célia Artur ◽  
Diana Neves ◽  
Boaventura C. Cuamba ◽  
António J. Leão
2018 ◽  
Vol 30 ◽  
pp. 292-303 ◽  
Author(s):  
Célia Artur ◽  
Diana Neves ◽  
Boaventura C. Cuamba ◽  
António J. Leão

Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Rokas Valančius ◽  
Andrius Jurelionis ◽  
Juozas Vaičiūnas ◽  
Eugenijus Perednis ◽  
Vykintas Šuksteris

Solar thermal systems with a total solar panel area varying from 2 to 204 m2 have been installed in Lithuania for over 20 years. The reviewed solar thermal domestic hot water systems in Lithuania produce up to 528 kWh per year per one square meter of solar collector absorber area. However, the  performance of these systems varies depending on the type of energy users, equipment and design of the  systems, as well as their maintenance. The  aim of this paper was to analyse solar thermal systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the  numerical simulation results. A number of different solar thermal systems in Lithuania were selected for the analysis varying both in equipment used (flat type solar collectors, evacuated tube collectors) and type of energy user (domestic hot water heating, swimming pool, district heating). The  simulation software Polysun 8.1 was used for evaluation of solar thermal system performance, as well as financial analysis of alternatives of these systems. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by solar thermal systems was up to approximately 11%. The calculation of internal rate of return showed that a grant is required in most cases for solar thermal projects to be fully profitable.


Author(s):  
Curtis Robbins ◽  
Travis Goldade ◽  
S. Kent Hoekman ◽  
Roger Jacobson ◽  
Robert Turner

The Desert Research Institute (DRI) has developed a Renewable Energy Deployment and Display Facility (REDD) which utilizes solar and wind to create a net zero energy residence for research, education, and outreach. The facility is a demonstration of the integration of many renewable energy technologies into a residential setting such that technology developers can show proof-of-concept, students and trade workers can get hands-on experience, and public organizations can see renewable energy components implemented into a residential setting. A major technological aspect of the facility is the use of solar thermal energy to provide space heating, Domestic Hot Water (DHW), and solar cooling. Data are monitored from three separate solar thermal systems, each with their own hot water storage, to evaluate optimized utilization of solar thermal energy into residential applications. The three solar thermal systems differ in their working fluids. System 1 uses a conventional mixture of glycol and water in 200 ft2 of ground mounted collector area, System 2 uses DHW in 210 ft2 of roof mounted collector area, and System 3 uses air in a 578 ft2 collector built into the roof. Each system is configured to be used for space heating and DHW. Systems 1 and 2 are built into the HVAC system of the 1200 ft2 house, and System 3 is built into the HVAC system of the 600 ft2 detached workshop. Data collected from each system provide the basis for year-long energy and economic simulations using TRNSYS for comparison. The results from the simulations are used to demonstrate the effectiveness of site-built solar air collectors, which have the advantage of using conventional materials, and avoid the issues of liquid collectors associated with boiling and freezing. This paper describes the experimental setup of the solar thermal systems, how the data are used as inputs to the computer simulations, and the configuration of the computer simulations. The REDD Facility, as well as the use of TRNSYS will continue to be used by DRI researchers to investigate not only the most feasible integration of components for a solar thermal residential system, but also as a tool to properly size and implement solar thermal systems.


2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.


Author(s):  
Radu Radoi ◽  
Ioan Pavel ◽  
Corneliu Cristescu ◽  
Liliana Dumitrescu

Fossil fuels are an exhaustible resource on Earth, and their use pollutes the environment massively. The population of the planet has grown a lot, and for the production of domestic hot water, to ensure a decent standard of living, it is necessary to consume increasing quantities of fossil fuels. The very high level of greenhouse gases released into the atmosphere leads to an increase in average of annual temperature and climate change. Climate change is manifested by the melting of the ice caps, which has the consequence of increasing the level of the seas and oceans. Climate change also leads to extreme weather events such as floods, heat waves or the appearance of arid areas. Risks to human health have increased through deaths caused by heat or by changing the way some diseases are spread. Risks also exist for flora and wildlife due to rapid climate change.Many species of animals migrate, and other species of animals and plants are likely to disappear. Climate change also leads to costs for society and the economy due to damage to property and infrastructure, which have been more than 90 billion euros in the last 30 years, just because of the floods. In order to reduce the effects of environmental pollution, ecological energy production solutions need to be expanded. The article presents the creation of an experimental stand of a Solar - TLUD stove combined system for the production of domestic hot water in a sustainable way. TLUD is the acronym for "Top-Lit UpDraft". The advantage of the combined heat system is that it can provide thermal energy both during the day and at night. If the atmospheric conditions are unfavorable (clouds, fog) and do not allow the water to be heated only with the solar panel, TLUD gas stove can be used to supplement the energy. The TLUD stove has low Carbon Monoxide (CO) and Particulate Matter (PM) emissions. After gasification, about 10% of the carbon contained in the biomass is thermally stabilized and can be used as a "biochar" in agriculture or it can be burnt completely, resulting in very little ash. The stand is composed of a solar thermal panel, a TLUD stove, a boiler for hot water storage and an automation system with circulation pumps and temperature sensors. To record the experimental results, a data acquisition board was used, with which data were recorded from a series of temperature and flow transducers located in the installation. Experimental results include diagrams for temperature variation, available energy and heat accumulated in the boiler. Keywords: combined thermal system, TLUD stove, domestic hot water, solar thermal panel, data aquisition system


Author(s):  
Gonzalo Sánchez-Barroso ◽  
Jaime González-Domínguez ◽  
Justo García-Sanz-Calcedo

Hospitals need to prepare large amounts of domestic hot water (DHW) to develop their healthcare activity. The aim of this work was to analyse potential savings that can be achieved by installing solar thermal energy for production of domestic hot water in the hospitals of Extremadura (Spain). For this purpose, 25 hospitals between 533 and 87,118 m2 and between 15 and 529 beds were studied, three solar factor scenarios were simulated (0.70, 0.75 and 0.80) and the necessary investment and corresponding economic and environmental savings were calculated. Better economic results and energy ratios for 70% of solar contribution were obtained. These results show an average payback of 4.74 years (SD = 0.26) reaching 4.29 kWh/€ per year (SD = 0.20). Undertaking an investment of 674,423 €, 2,895,416 kWh/year of thermal energy could be generated with which to save both 145,933 € and 638 tons of CO2 per year. It was statistically demonstrated the priority of carrying out an installation with a solar factor of 70%, investing preferably in hospitals in Cáceres over those in Badajoz, especially in the public sector with more than 300 beds. These findings will provide hospital managers with useful information to make decisions on future investments.


Sign in / Sign up

Export Citation Format

Share Document