A novel immersed boundary velocity correction–lattice Boltzmann method and its application to simulate flow past a circular cylinder

2007 ◽  
Vol 226 (2) ◽  
pp. 1607-1622 ◽  
Author(s):  
C. Shu ◽  
N. Liu ◽  
Y.T. Chew
2011 ◽  
Vol 105-107 ◽  
pp. 2307-2310
Author(s):  
Jian Ping Yu ◽  
Shu Rong Yu ◽  
Xing Wang Liu

Lattice Boltzmann methods (LBM) have become an alternative to conventional computational fluid dynamics (CFD) methods for various systems. In this paper, flow field of mean flow past a circular cylinder was simulated based on the lattice Boltzmann method. The streamline of air past the cylinder illuminated that the fluid adhere on the boundary and doesn’t separate from the surface of cylinder when Re number less than 5. When Re number equal 40, flow separated to form a pair of recirculating eddies can be observed. With the Re number increasing, the trailing vortex length is growth accordingly. When Re number come up to 80, the trailing vortex begin to shed regularly. This result is consistent with the experiment data. Drag coefficient that fluid act on the surface of cylinder was calculated. The calculated results were same as the experiment data. Simulation indicate that LBM can simulate the vortex taking place and shedding effectively.


2016 ◽  
Vol 20 (1) ◽  
pp. 156-178 ◽  
Author(s):  
Jie Wu ◽  
Jing Wu ◽  
Jiapu Zhan ◽  
Ning Zhao ◽  
Tongguang Wang

AbstractA robust immersed boundary-lattice Boltzmann method (IB-LBM) is proposed to simulate fluid-structure interaction (FSI) problems in this work. Compared with the conventional IB-LBM, the current method employs the fractional step technique to solve the lattice Boltzmann equation (LBE) with a forcing term. Consequently, the non-physical oscillation of body force calculation, which is frequently encountered in the traditional IB-LBM, is suppressed greatly. It is of importance for the simulation of FSI problems. In the meanwhile, the no-slip boundary condition is strictly satisfied by using the velocity correction scheme. Moreover, based on the relationship between the velocity correction and forcing term, the boundary force can be calculated accurately and easily. A few test cases are first performed to validate the current method. Subsequently, a series of FSI problems, including the vortex-induced vibration of a circular cylinder, an elastic filament flapping in the wake of a fixed cylinder and sedimentation of particles, are simulated. Based on the good agreement between the current results and those in the literature, it is demonstrated that the proposed IB-LBM has the capability to handle various FSI problems effectively.


2014 ◽  
Vol 6 (06) ◽  
pp. 811-829 ◽  
Author(s):  
X. Wang ◽  
C. Shu ◽  
J. Wu ◽  
L. M. Yang

AbstractA boundary condition-implemented immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this work. The present approach is an improvement to the conventional IB-LBM. In the conventional IB-LBM, the no-slip boundary condition is only approximately satisfied. As a result, there is flow penetration to the solid boundary. Another drawback of conventional IB-LBM is the use of Dirac delta function interpolation, which only has the first order of accuracy. In this work, the no-slip boundary condition is directly implemented, and used to correct the velocity at two adjacent mesh points from both sides of the boundary point. The velocity correction is made through the second-order polynomial interpolation rather than the first-order delta function interpolation. Obviously, the two drawbacks of conventional IB-LBM are removed in the present study. Another important contribution of this paper is to present a simple way to compute the hydrodynamic forces on the boundary from Newton’s second law. To validate the proposed method, the two-dimensional vortex decaying problem and incompressible flow over a circular cylinder are simulated. As shown in the present results, the flow penetration problem is eliminated, and the obtained results compare very well with available data in the literature.


2013 ◽  
Vol 25 (01) ◽  
pp. 1340024 ◽  
Author(s):  
CHUAN GU ◽  
SHYAM S. CHIKATAMARLA ◽  
ILIYA V. KARLIN

The entropic lattice Boltzmann method (ELBM) has been demonstrated to bring unconditional stability and accuracy to sub-gird flow simulations. However, the application of ELBM to engineering flows were restricted so far due to the lack of a matching wall boundary condition that retains the accuracy of the method for both resolved and under-resolved simulations. To this end, we show that the recently proposed wall boundary condition for ELBM is reliable and accurate for both these regimes. Three-dimensional (3D) flow past a circular cylinder is taken as a benchmark to show that ELBM is both stable and accurate for range of Reynolds numbers and grid sizes. Several key parameter of this flow are studied in detail.


Sign in / Sign up

Export Citation Format

Share Document