An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier–Stokes flows

2014 ◽  
Vol 257 ◽  
pp. 670-686 ◽  
Author(s):  
Wei-Fan Hu ◽  
Yongsam Kim ◽  
Ming-Chih Lai
2018 ◽  
Vol 8 (12) ◽  
pp. 2387 ◽  
Author(s):  
Yusuke Mizuno ◽  
Shun Takahashi ◽  
Kota Fukuda ◽  
Shigeru Obayashi

We investigated particulate flows by coupling simulations of the three-dimensional incompressible Navier–Stokes equation with the immersed boundary method (IBM). The results obtained from the two-way coupled simulation were compared with those of the one-way simulation, which is generally applied for clarifying the particle kinematics in industry. In the present flow simulation, the IBM was solved using a ghost–cell approach and the particles and walls were defined by a level set function. Using proposed algorithms, particle–particle and particle–wall collisions were implemented simply; the subsequent coupling simulations were conducted stably. Additionally, the wake structures of the moving, colliding and rebounding particles were comprehensively compared with previous numerical and experimental results. In simulations of 50, 100, 200 and 500 particles, particle–wall collisions were more frequent in the one–way scheme than in the two-way scheme. This difference was linked to differences in losses in energy and momentum.


2021 ◽  
Vol 233 ◽  
pp. 109189
Author(s):  
Bin Yan ◽  
Wei Bai ◽  
Sheng-Chao Jiang ◽  
Peiwen Cong ◽  
Dezhi Ning ◽  
...  

Author(s):  
Karim M. Ali ◽  
Mohamed Madbouli ◽  
Hany M. Hamouda ◽  
Amr Guaily

This work introduces an immersed boundary method for two-dimensional simulation of incompressible Navier-Stokes equations. The method uses flow field mapping on the immersed boundary and performs a contour integration to calculate immersed boundary forces. This takes into account the relative location of the immersed boundary inside the background grid elements by using inverse distance weights, and also considers the curvature of the immersed boundary edges. The governing equations of the fluid mechanics are solved using a Galerkin-Least squares finite element formulation. The model is validated against a stationary and a vertically oscillating circular cylinder in a cross flow. The results of the model show acceptable accuracy when compared to experimental and numerical results.


2012 ◽  
Vol 140 (5) ◽  
pp. 1603-1619 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Shao-Fan Chang ◽  
Juanzhen Sun

This study develops an extension of a variational-based multiple-Doppler radar synthesis method to construct the three-dimensional wind field over complex topography. The immersed boundary method (IBM) is implemented to take into account the influence imposed by a nonflat surface. The IBM has the merit of providing realistic topographic forcing without the need to change the Cartesian grid configuration into a terrain-following coordinate system. Both Dirichlet and Neumann boundary conditions for the wind fields can be incorporated. The wind fields above the terrain are obtained by variationally adjusting the solutions to satisfy a series of weak constraints, which include the multiple-radar radial velocity observations, anelastic continuity equation, vertical vorticity equation, background wind, and spatial smoothness terms. Experiments using model-simulated data reveal that the flow structures over complex orography can be successfully retrieved using radial velocity measurements from multiple Doppler radars. The primary advantages of the original synthesis method are still maintained, that is, the winds along and near the radar baseline are well retrieved, and the resulting three-dimensional flow fields can be used directly for vorticity budget diagnosis. If compared with the traditional wind synthesis algorithm, this method is able to merge data from different sources, and utilize data from any number of radars. This provides more flexibility in designing various scanning strategies, so that the atmosphere may be probed more efficiently using a multiple-radar network. This method is also tested using the radar data collected during the Southwest Monsoon Experiment (SoWMEX), which was conducted in Taiwan from May to June 2008 with reasonable results being obtained.


Sign in / Sign up

Export Citation Format

Share Document