Forced convection induced thermal fluctuations at the solid–liquid interface and its effect on the radial alloy distribution in vertical Bridgman grown Ga1−xInxSb bulk crystals

2006 ◽  
Vol 289 (2) ◽  
pp. 450-457 ◽  
Author(s):  
H.J. Kim ◽  
A. Chandola ◽  
R. Bhat ◽  
P.S. Dutta
2013 ◽  
Vol 93 (10) ◽  
pp. 608-617 ◽  
Author(s):  
Sven Binder ◽  
Peter K. Galenko ◽  
Dieter M. Herlach

2021 ◽  
Author(s):  
Mehdi Mohammadi Shemirani

This research explores simulation of the growth of large diameter single bulk crystals of silicon and germanium alloy from its melt utilizing Bridgman method. Producing homogeneous single bulk crystals requires a good understanding of the thermo-solutal behavior in the solvent region. This study also suggests certain fundamental scientific aspects of this alloy system which are not well considered to date, and which underlie both the homogeneity and obtaining relatively flat solid liquid interface of the SixGe1-x alloy. These aspects are the diffusion and transport of silicon and germanium in the molten alloy. Both three and two dimensional numerical simulations of thermo-solutal convection in solvent region were examined. The whole simulation scheme was applied to a cylindrical model representing the sample to investigate the aforementioned phenomena in the entire process. It was found that the application of axial magnetic field had no significant effect on the buoyancy driven convection in the solvent region. However, conducting the microgravity environment simulation has shown that the removal of the gravitational force on the solvent region would result in a homogeneous solidification. As an alternative, this study has found that both axial and radial temperature gradients play a role in the solidification process. Controlling this phenomenon, along with two other factors such as applied uniform temperature and reduced pulling rate, would help achieve a homogeneous single bulk crystal with more uniform silicon distribution in the solvent region, more specifically near the solid liquid interface and produce a flat shape interface which is most desired shape in industry.


2000 ◽  
Author(s):  
Jeffrey J. Derby ◽  
Andrew Yeckel

Abstract Axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing.


2021 ◽  
Author(s):  
Mehdi Mohammadi Shemirani

This research explores simulation of the growth of large diameter single bulk crystals of silicon and germanium alloy from its melt utilizing Bridgman method. Producing homogeneous single bulk crystals requires a good understanding of the thermo-solutal behavior in the solvent region. This study also suggests certain fundamental scientific aspects of this alloy system which are not well considered to date, and which underlie both the homogeneity and obtaining relatively flat solid liquid interface of the SixGe1-x alloy. These aspects are the diffusion and transport of silicon and germanium in the molten alloy. Both three and two dimensional numerical simulations of thermo-solutal convection in solvent region were examined. The whole simulation scheme was applied to a cylindrical model representing the sample to investigate the aforementioned phenomena in the entire process. It was found that the application of axial magnetic field had no significant effect on the buoyancy driven convection in the solvent region. However, conducting the microgravity environment simulation has shown that the removal of the gravitational force on the solvent region would result in a homogeneous solidification. As an alternative, this study has found that both axial and radial temperature gradients play a role in the solidification process. Controlling this phenomenon, along with two other factors such as applied uniform temperature and reduced pulling rate, would help achieve a homogeneous single bulk crystal with more uniform silicon distribution in the solvent region, more specifically near the solid liquid interface and produce a flat shape interface which is most desired shape in industry.


2020 ◽  
Vol 124 (5) ◽  
pp. 2987-2993
Author(s):  
Chi-Kuang Sun ◽  
Yi-Ting Yao ◽  
Chih-Chiang Shen ◽  
Mu-Han Ho ◽  
Tien-Chang Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document