nanoparticle layer
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Timofey E. Pylaev ◽  
Yuri Efremov ◽  
Elena S. Avdeeva ◽  
Artem A. Antoshin ◽  
Anastasiia I. Shpichka ◽  
...  

2021 ◽  
Vol 2116 (1) ◽  
pp. 012002
Author(s):  
Tomio Okawa ◽  
Koki Nakano ◽  
Yutaro Umehara

Abstract The nanoparticle layer detachment during nucleate pool boiling and its influences on heat transfer surface properties were explored experimentally. The material of the heat transfer surface was copper and the nanoparticle layer was formed on the heat transfer surface by nucleate boiling in the water-based TiO2 nanofluid. It was found that the detachment of the nanoparticle layer during nucleate boiling in pure water is significant. In the present experiment, more than half of nanoparticles deposited on the heated surface were detached before the CHF condition was reached. The thickness and roughness decreased accordingly. However, the wettability and wickability that are the influential parameters on the CHF value were maintained even after the occurrence of nanoparticle layer detachment and deteriorated only after the CHF condition was reached. It is therefore considered that the onset of CHF brings qualitative change to the capillary suction performance of the layer of nanoparticles. In exploring the effect of the nanoparticle layer properties on the nucleate boiling heat transfer, sufficient attention should be paid to the variation of the nanoparticle layer properties during nucleate boiling.


2021 ◽  
Author(s):  
Xiangwei Qu ◽  
Jingrui Ma ◽  
Siqi Jia ◽  
Zhenghui Wu ◽  
Pai Liu ◽  
...  

2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Patrick Bürger ◽  
Ulrich Riebel

AbstractIn this study, a flame-generated nm-range SiO2 aerosol (approx. 170 nm median aggregate diameter) is fed into an electrostatic precipitator with an operating temperature of 200 °C. While a highly porous layer of SiO2 nanoparticles (NPs) is deposited by electrostatic precipitation, a decrease of current uptake is observed initially, indicating exceptionally high values of the electric field within the layer (> 100 kV/mm) and of the layer resistivity (> 1013 Ω∙cm). Later a strong (13- to 17-fold) increase of current uptake is observed. Aerosol charge measurements show that charges of opposite polarity are emitted from the NP layer. Investigation of the NP layer by SEM shows that charge-emitting structures with a polarity-dependent morphology develop on an originally homogeneous NP layer. Based on the experimental evidence, the mechanisms of charge emission and structure formation are discussed. Charge emission from the precipitated dust layer is known as back corona in the field of electrostatic precipitation. It appears that the mechanisms of back corona observed with SiO2 NP layers are quite distinct from those observed with µm-range particles. While gas discharges inside the NP layer are suppressed due to small pore size, back corona inside the NP layers is apparently initiated by thermionic field emission of free electrons and secondary electron multiplication within the NP layer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 417
Author(s):  
Lehui Ren ◽  
Meng Ping ◽  
Xingran Zhang

A facile approach to fabricate antibiofouling membrane was developed by grafting quaternary ammonium compounds (QACs) onto polyvinylidene fluoride (PVDF) membrane via surface-initiated activators regenerated by electron transfer atom-transfer radical-polymerization (ARGET ATRP) method. During the modification process, a hydrophilic silica nanoparticle layer was also immobilized onto the membrane surface as an interlayer through silicification reaction for QAC grafting, which imparted the membrane with favorable surface properties (e.g., hydrophilic and negatively charged surface). The QAC-modified membrane (MQ) showed significantly improved hydrophilicity and permeability mainly due to the introduction of silica nanoparticles and exposure of hydrophilic quaternary ammonium groups instead of long alkyl chains. Furthermore, the coverage of QAC onto membrane surface enabled MQ membrane to have clear antibacterial effect, with an inhibition rate ~99.9% of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), respectively. According to the batch filtration test, MQ had better antibiofouling performance compared to the control membrane, which was ascribed to enhanced hydrophilicity and antibacterial activity. Furthermore, the MQ membrane also exhibited impressive stability of QAC upon suffering repeated fouling–cleaning tests. The modification protocols provide a new robust way to fabricate high-performance antibiofouling QAC-based membranes for wastewater treatment.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 7
Author(s):  
Angelika Kaiser ◽  
Erick Torres Ceja ◽  
Florian Huber ◽  
Ulrich Herr ◽  
Klaus Thonke

In this work, we investigate the catalytic effects of gold (Au) and platinum (Pt) nanoparticle layer deposition on highly sensitive zinc oxide (ZnO) nanowires (NWs) used for selective H2S detection in the sub-ppm region. Optimum quality pristine ZnO NWs were grown by high temperature chemical vapor deposition (CVD) in the vapor liquid solid growth (VLS) mode on silicon with a thin Au layer acting as a growth catalyst. The surface of pristine ZnO NWs was modified by systematic magnetron sputtering of discontinuous Au and Pt layers of 0–5 nm thickness. Resistive gas sensors based on the gas sensing mechanism of a chemical field effect transistor (ChemFET) with open gate, which is formed by hundreds of parallel aligned pristine Au-modified or Pt-modified ZnO NWs, were measured toward H2S diluted in dry nitrogen (N2) or in dry synthetic air at room temperature. Gas sensing results showed a largely improved response due to the catalytic effects of metal deposition on the ZnO NW surface. Controlled application of ZnO NW growth under optimized conditions and metal catalyst deposition showed a clear response enhancement toward 1 ppm H2S from the initial 20% achieved with pristine ZnO to over 5000% with ZnO NWs covered by 5 nm of Au, and, hence, significantly lower than the limit of detection.


Sign in / Sign up

Export Citation Format

Share Document