Column demands in steel plate shear walls with regular perforations using performance-based design methods

2014 ◽  
Vol 103 ◽  
pp. 13-22 ◽  
Author(s):  
Hassan Moghimi ◽  
Robert G. Driver
2012 ◽  
Vol 06 (01) ◽  
pp. 1250004 ◽  
Author(s):  
SWAPNIL B. KHARMALE ◽  
SIDDHARTHA GHOSH

The thin unstiffened steel plate shear wall (SPSW) system has now emerged as a promising lateral load resisting system. Considering performance-based design requirements, a ductility-based design was recently proposed for SPSW systems. It was felt that a detailed and closer look into the aspect of seismic lateral force distribution was necessary in this method. An investigation toward finding a suitable lateral force distribution for ductility-based design of SPSW is presented in this paper. The investigation is based on trial designs for a variety of scenarios where five common lateral force distributions are considered. The effectiveness of an assumed trial distribution is measured primarily on the basis of how closely the design achieves the target ductility ratio, which is measured in terms of the roof displacement. All trial distributions are found to be almost equally effective. Therefore, the use of any commonly adopted lateral force distribution is recommended for plastic design of SPSW systems.


Author(s):  
J. W. Berman ◽  
L. N. Lowes ◽  
N. M. Baldvins ◽  
N. A. Low ◽  
T. N. Janes

Author(s):  
N. Naraki ◽  
M. R. Mahini ◽  
A. R. Fiouz ◽  
G. Cocchetti

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yang Lv ◽  
Ling Li ◽  
Di Wu ◽  
Bo Zhong ◽  
Yu Chen ◽  
...  

Four scaled one-storey single-bay steel plate shear wall (SPSW) specimens with unstiffened panels were tested to determine their behaviour under cyclic loadings. The shear walls had moment-resisting beam-to-column connections. Four different vertical loads, i.e., 300 kN, 600 kN, 900 kN, and 1200 kN, representing the gravity load of the upper storeys were applied at the top of the boundary columns through a force distribution beam. A horizontal cyclic load was then applied at the top of the specimens. The specimen behaviour, envelope curves, axial stress distribution of the infill steel plate, and shear capacity were analyzed. The axial stress distribution and envelope curves were compared with the values predicted using an analytical model available in the literature.


Sign in / Sign up

Export Citation Format

Share Document