Full-range stress-strain model for stainless steel alloys

2020 ◽  
Vol 173 ◽  
pp. 106266
Author(s):  
D. Fernando ◽  
J.G. Teng ◽  
W.M. Quach ◽  
L. De Waal
2012 ◽  
Vol 730-732 ◽  
pp. 691-696
Author(s):  
Abdella Kenzu

Presented in this paper is an explicit full-range stress-strain relation for stainlesssteel alloys applicable at normal and elevated temperatures. The relation utilizes an approxima-tion of the closed form inversion of a highly accurate three-stage stress-strain relation recentlyobtained from the Ramberg-Osgood equation. The three stage inversion is formulated using anappropriate rational function assumption to approximate the fractional deviation of the actualstress-strain relation from an idealized linear elastic behaviour. The temperature dependenceon the stress-strain relation is then introduced by modifying the basic mechanical propertiesof stainless steel to account for the temperature e ects. The proposed approximate inversionis applicable over the full-range of the stress well beyond the elastic region up to the ultimatestress. Moreover, the inversion can be applied to both tensile and compressive stresses. Theproposed approximate inversion is tested over a wide range of material parameters as well as awide range of temperatures. It is shown that the new expression results in stress-strain curveswhich are both qualitatively and quantitatively in excellent agreement with experimental re-sults and the fully iterated numerical solution of the full-range stress-strain relation for normalas well as elevated temperatures


2008 ◽  
Vol 134 (9) ◽  
pp. 1518-1527 ◽  
Author(s):  
W. M. Quach ◽  
J. G. Teng ◽  
K. F. Chung

Author(s):  
Stijn Hertele´ ◽  
Wim De Waele ◽  
Rudi Denys

It is standard practice to approximate the post-yield behavior of pipeline steels by means of the Ramberg-Osgood equation. However, the Ramberg-Osgood equation is often unable to accurately describe the stress-strain behavior of contemporary pipeline steels with a high Y/T ratio. This is due to the occurrence of two distinct, independent stages of strain hardening. To address this problem, the authors recently developed a new ‘UGent’ stress-strain model which provides a better description of those steels. This paper elaborates a methodology to estimate suited parameter values for the UGent model, starting from a set of tensile characteristics. Using the proposed methodology, good approximations have been obtained for a preliminary series of eight investigated stress-strain curves. Next to all common tensile characteristics, the 1% proof stress is needed. The authors therefore encourage the future acquisition of this stress level during tensile tests. Currently, the authors perform a further in-depth validation which will be reported in the near future.


2015 ◽  
Vol 87 ◽  
pp. 540-552 ◽  
Author(s):  
I. Arrayago ◽  
E. Real ◽  
L. Gardner

Sign in / Sign up

Export Citation Format

Share Document