elastic behaviour
Recently Published Documents


TOTAL DOCUMENTS

810
(FIVE YEARS 102)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hidenaga Kobashi ◽  
Takashi Yano ◽  
Kazuo Tsubota

Abstract Purpose: We evaluated the use of collagenase treatment to generate a rabbit model of keratoconus and the impact of violet light (VL) irradiation on the disease model in six Japanese White rabbits. Methods: After epithelial debridement, the collagenase group was treated with a collagenase type II solution for 30 min; the control group was treated with a solution without collagenase. Three rabbits also underwent VL irradiation (375 nm, irradiance 310 μW/cm2) for 3 hours daily for 7 days after topical collagenase application. Slit-lamp microscopy results, steep keratometry (Ks), corneal astigmatism, central corneal thickness, and axial length were examined before and after the procedure. The corneas were obtained on day 7 for biomechanical evaluation. Results: A significant increase in Ks and corneal astigmatism was observed in the collagenase and VL irradiation groups compared with the control group at day 7. No significant difference was found in the change in corneal thickness between the groups. The elastic modulus at 10% strain, but not at 3% and 5% strain, was significantly lower in the collagenase group than in the control group. There was no significant difference in the elastic modulus at each level of strain between the collagenase and VL irradiation groups. The average axial length at day 7 was significantly longer in the collagenase group than in the control group. Collagenase treatment induced a keratoconic model by steepening the keratometric and astigmatic values. There was no significant difference in the observed elastic behaviour of normal and ectatic corneas under physiologically relevant stress levels. Conclusion: VL irradiation did not cause regression of corneal steepening in collagenase-induced model during short-term observation.


2021 ◽  
Author(s):  
Kateryna Oliynyk ◽  
◽  
Matteo Ciantia ◽  

In this paper an isotropic hardening elastoplastic constitutive model for structured soils is applied to the simulation of a standard CPTu test in a saturated soft structured clay. To allow for the extreme deformations experienced by the soil during the penetration process, the model is formulated in a fully geometric non-linear setting, based on: i) the multiplicative decomposition of the deformation gradient into an elastic and a plastic part; and, ii) on the existence of a free energy function to define the elastic behaviour of the soil. The model is equipped with two bonding-related internal variables which provide a macroscopic description of the effects of clay structure. Suitable hardening laws are employed to describe the structure degradation associated to plastic deformations. The strain-softening associated to bond degradation usually leads to strain localization and consequent formation of shear bands, whose thickness is dependent on the characteristics of the microstructure (e.g, the average grain size). Standard local constitutive models are incapable of correctly capturing this phenomenon due to the lack of an internal length scale. To overcome this limitation, the model is framed using a non-local approach by adopting volume averaged values for the internal state variables. The size of the neighbourhood over which the averaging is performed (characteristic length) is a material constant related to the microstructure which controls the shear band thickness. This extension of the model has proven effective in regularizing the pathological mesh dependence of classical finite element solutions in the post-localization regime. The results of numerical simulations, conducted for different soil permeabilities and bond strengths, show that the model captures the development of plastic deformations induced by the advancement of the cone tip; the destructuration of the clay associated with such plastic deformations; the space and time evolution of pore water pressure as the cone tip advances. The possibility of modelling the CPTu tests in a rational and computationally efficient way opens a promising new perspective for their interpretation in geotechnical site investigations.


Author(s):  
Chris Sungkyun Bang ◽  
Zeeshan Rana ◽  
László Könözsy ◽  
Veronica M. Rodriguez ◽  
Clive Temple

Abstract The present work focuses on an advanced coupling of computational fluid dynamics (CFD) and structural analysis (FEA) on the aeroelastic behaviour of a single element inverted composite wing with the novelty of including the ground effect. The front wing of the Formula One (F1) car can become flexible under the fluid loading due to elastic characteristics of composite materials, resulting in changing the flow field and eventually altering overall aerodynamics. The purpose of this study is to setup an accurate fluid-structure interaction (FSI) modelling framework and to assess the influence of elastic behaviour of the wing in ground effect on the aerodynamic and structural performance. Different turbulence models are studied to better capture the changes of the flow field and variation of ride heights are considered to investigate the influence of ground effect on aerodynamic phenomena. A steady-state two-way coupling method is exploited to run the FSI numerical simulations using ANSYS, which enables simultaneous calculation by coupling CFD with FEA. The effect of various composite structures on the wing performance is extensively studied concerning structure configuration, ply orientation and core materials. The numerical results generally represent good agreement with the experimental data, however, discrepancy, especially in the aerodynamic force, is presented. This may be consequence of less effective angle of attack due to the wing deflection and deterioration of vortex-induced effect. For the structural analysis, the woven structure gives rise to more stable structural deflection than the unidirectional structure despite the associated weight penalty.


2021 ◽  
Vol 11 (22) ◽  
pp. 10691
Author(s):  
Rúben Silva ◽  
Diogo Ribeiro ◽  
Cássio Bragança ◽  
Cristina Costa ◽  
António Arêde ◽  
...  

This article presents an efficient methodology for the calibration of a numerical model of a Sgnss freight railway wagon based on experimental modal parameters, namely natural frequencies and mode shapes. Dynamic tests were performed for two distinct static loading configurations, tare weight and current operational overload, under demanding test conditions, particularly during an unloading operation of the train and without disturbing its tight operational schedule. These conditions impose restrictions to the tests, especially regarding the test duration, sensor positioning and system excitation. The experimental setups involve the use of several high-sensitivity accelerometers strategically distributed along with the vehicle platform and bogies in the vertical direction. The modal identification was performed with the application of the enhanced frequency-domain decomposition (EFDD) method, allowing the estimation of 10 natural frequencies and mode shapes associated with structural movements of the wagon platform, which in some cases are coupled with rigid body movements. A detailed 3D FE model of the freight wagon was developed including the platform, bogies, wheelsets, primary suspensions and wheel–rail interface. The model calibration was performed sequentially, first with the unloaded wagon model and then with the loaded wagon model, resorting to an iterative method based on a genetic algorithm. The calibration process allowed the obtainment of the optimal values of eight numerical parameters, including a double estimation of the vertical stiffness of the primary suspensions under the unloaded and loaded static configurations. The results demonstrate that the primary suspensions present an elastic/almost elastic behaviour. The comparison of experimental and numerical responses before and after calibration revealed significant improvements in the numerical models and a very good correlation between the experimental and numerical responses after calibration.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3916
Author(s):  
Huidong Wei ◽  
James S. Wolffsohn ◽  
Otavio Gomes de Oliveira ◽  
Leon N. Davies

A synthetic material of silicone rubber was used to construct an artificial lens capsule (ALC) in order to replicate the biomechanical behaviour of human lens capsule. The silicone rubber was characterised by monotonic and cyclic mechanical tests to reveal its hyper-elastic behaviour under uniaxial tension and simple shear as well as the rate independence. A hyper-elastic constitutive model was calibrated by the testing data and incorporated into finite element analysis (FEA). An experimental setup to simulate eye focusing (accommodation) of ALC was performed to validate the FEA model by evaluating the shape change and reaction force. The characterisation and modelling approach provided an insight into the intrinsic behaviour of materials, addressing the inflating pressure and effective stretch of ALC under the focusing process. The proposed methodology offers a virtual testing environment mimicking human capsules for the variability of dimension and stiffness, which will facilitate the verification of new ophthalmic prototype such as accommodating intraocular lenses (AIOLs).


2021 ◽  
Author(s):  
Lan Cui ◽  
Qian Sheng ◽  
Chen Xu ◽  
youkou dong

Abstract The regression analysis method is being widely adopted to analyse the tunnel strain, most of which ignore the strain-softening effect of the rock mass and also fail to consider the influence of support pressure, initial stress state, and rock mass strength classification in one fitting equation. This study aims to overcome these deficiencies with a regression model used to estimate the tunnel strain. A group of geological strength indexes (GSI) are configured to quantify the input strength parameters and deformation moduli for the rock mass with a quality ranging from poor to excellent. A specific numerical procedure is developed to calculate the tunnel strain around a circular opening, which is validated by comparison with those using existing methods. A nonlinear regression model is then established to analyse the obtained tunnel strain, combining twelve fitting equations to relate the tunnel strain and the factors including the support pressure, the GSI, the initial stress state, and the critical softening parameter. Particularly, three equations are for the estimation of the critical tunnel strain, the critical support pressure, and the tunnel strain under elastic behaviour, respectively; and the other nine equations are for the tunnel strain with different strain-softening behaviours. The relative significance between the GSI, the initial stress and the support pressure on the tunnel strain is assessed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergej Rempel ◽  
Marcus Ricker ◽  
Tânia Feiri

AbstractTextile-reinforced concrete has emerged in recent years as a new and valuable construction material. The design of textile-reinforced concrete requires knowledge on the mechanical properties of different textile types as well as their reinforcing behaviour under different loading conditions. Conventional load-bearing tests tend to be complex, time-consuming, costly and can even lack consistent specifications. To mitigate such drawbacks, a standardised tensile test for fibre strands was used to characterise the material properties needed for the design of a textile-reinforced concrete member. The standardised tensile test uses a fibre strand with 160 mm length, which is cut out of a textile grid. For the sake of this study, an epoxy resin-soaked AR-glass reinforcement was considered. The results show that the textile reinforcement has a linear-elastic behaviour, and the ultimate tensile strength can be statistically modelled by a Gumbel distribution. Furthermore, the results indicate that the modulus of elasticity is not influenced by the length or the number of fibre strands. Therefore, the mean value attained from the standardised test can be used for design purposes. These findings are essential to derive an appropriate partial safety factor for the calculation of the design values of the tensile strength and can be used to determine the failure probability of textile-reinforced concrete members.


2021 ◽  
Vol 906 (1) ◽  
pp. 012105
Author(s):  
Pavla Bukovská ◽  
Patrik Burg ◽  
Vladimir Masán ◽  
Alice Cížková

Abstract Several methods for agricultural soil compaction evaluation are known. However, there is a lack of knowledge about a soil elasticity, which could be an important factor for final level of compaction. The paper deals with a possibility of evaluation of soil elasticity using automatic computerized oedometer. A simulation of tractor passing was performed as a part of research focused on the monitoring of soil conditions in vineyards. Cyclic loading test of five loading cycles (loading 300 kPa and un-loading 5 kPa) was performed and vertical deflection was observed, which changed in dependency on change of vertical stress. Course of vertical deformation indicates the ability of soil to relax when the load subsides. The paper presents pilot results, that show good potential of using oedometer for soil elasticity evaluating. Information on the elastic behaviour of soil will make it possible to design and apply means for improving soil elasticity and thus help to mitigate the effects of soil compaction.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012017
Author(s):  
Ahmed Imran

Abstract Computer simulation with programming and Matlab graphics was used to analyse effects of meniscal component thickness on lengths of ligament fibres in partially replaced human knee with uni-compartmental arthroplasty. A circular femoral, a flat tibial and a matching meniscal component were modelled in the sagittal plane with four intact ligaments represented as fibres that showed non-linear elastic behaviour. Shapes of the prosthetic components, attachments of the ligament fibres and their material properties were from anatomical studies in the literature. The components when placed on respective bones with surgical guidelines and an optimized thickness of the meniscal insert achieved nearly fixed lengths of ligament fibres during motion. Changes in thickness of the insert either stretched or slackened the fibres with variable effects during flexion of the joint. For example, a 2 mm thicker insert stretched a fibre of anterior cruciate ligament by 4.7% at 30° and 3.2% at 120° flexion. Such variations in component selection are probable due to surgical judgments. Stretched ligaments could increase joint stiffness, while slack ligaments could increase joint laxity – either of these effects has potential for affecting the joint kinematics. Computer models of the replaced knee validated with anatomical studies allow insight in the mechanics of the replaced knee and effects of surgical errors.


2021 ◽  
Vol 7 (2) ◽  
pp. 343-346
Author(s):  
Davina Schlesiger ◽  
Giuliano A. Giacoppo ◽  
Max B. Schäfer ◽  
Peter P. Pott

Abstract A twisted string actuator (TSA) is a small, strong, lightweight, and low-cost gear, transforming rotation into a linear pulling movement. The TSA consists of two or more strings that are twisted along their common longitudinal axis. The helix formed in this process becomes shorter the further the bundle is twisted. A possible application is a tendon-based endoscopic robot. To control the movement of the endoscope, a precise contraction of the tendon is necessary. Since the strings of the TSA show an elastic behaviour, position feedback is needed to determine the exact movement of the TSA. In this paper, a TSA with a closed-loop position control by a low-cost displacement sensor is presented.


Sign in / Sign up

Export Citation Format

Share Document