Seismic behavior of composite steel plate shear walls with rubber-coated uplift-restrained studs

2021 ◽  
Vol 182 ◽  
pp. 106683
Author(s):  
Xiaotian Feng ◽  
Jinguang Yu ◽  
Jay Shen
2017 ◽  
Vol 16 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Hossein Khosravi ◽  
◽  
Sayed Shoaib Mousavi ◽  
Gholamreza Tadayonfar ◽  
◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ningning Feng ◽  
Changsheng Wu

Two specimens of nonductile reinforced concrete (RC) frame (ND-1) and nonductile RC frame retrofitted by corrugated steel plate shear walls slotted with columns (ND-2) are established by finite element. These specimens have same dimensions and steel skeletons. Finite element models had been verified by the existing experimental results. The hysteresis curves, skeleton curves, ductility, and stiffness curves of Specimen ND-1 and Specimen ND-2 are compared. The results show that the reinforcement effect is significant. Twenty-four models are built to study the seismic behavior on different influence parameters. The parameters are slit width, thickness of corrugated steel plate shear walls, concrete strength of nonductile RC frame, and boundary conditions of corrugated steel plate shear walls at slotted parts. The results indicate that the strength is declined with the increase of slit width. With the increase of thickness and concrete strength, the strength and stiffness are enhanced. The strength is larger with the boundary than without. Slit width and thickness have an important impact on the stiffness. Concrete strength and boundary conditions have little impact on stiffness. The strengthened nonductile RC frames have enough ductility.


2010 ◽  
Vol 163-167 ◽  
pp. 239-244
Author(s):  
Zhen Guo ◽  
Ying Shu Yuan

An experimental study was performed to investigate the structural capacity of composite steel plate walls with trilateral constrained. Six one-third-scale models of one-story prototype walls with composite steel plate shear walls were tested. The parameters for this test were the width-thickness ratio of infill steel plates and the strength of compound precast plate. Regardless of the infill plate design, the steel plate wall specimens exhibited excellent strength, deformation capacity. The design of boundary connection method is important to small width-thickness ratio of infill plates. Bolt sliding between the infill steel plates and boundary frame would decrease initial stiffness and shear strength of the steel plate shear walls. And more, this result indicates that the initial stiffness and shear strength would be improved highly with compound precast plate as resistant-lateral of infill steel plate. But the precast plate must be have sufficient strengh in design.


Sign in / Sign up

Export Citation Format

Share Document