scholarly journals On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian systems

2008 ◽  
Vol 245 (4) ◽  
pp. 1086-1111 ◽  
Author(s):  
Hong Zang ◽  
Maoan Han ◽  
Dongmei Xiao
2017 ◽  
Vol 27 (04) ◽  
pp. 1750055 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from near-Hamiltonian systems where the corresponding Hamiltonian system has a double homoclinic loop passing through a hyperbolic saddle surrounded by a heteroclinic loop with a hyperbolic saddle and a nilpotent saddle, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles of the following system [Formula: see text] as an application of our results, where [Formula: see text] is a polynomial of degree five.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Huanhuan Tian ◽  
Maoan Han

We study the expansions of the first order Melnikov functions for general near-Hamiltonian systems near a compound loop with a cusp and a nilpotent saddle. We also obtain formulas for the first coefficients appearing in the expansions and then establish a bifurcation theorem on the number of limit cycles. As an application example, we give a lower bound of the maximal number of limit cycles for a polynomial system of Liénard type.


2012 ◽  
Vol 22 (08) ◽  
pp. 1250189 ◽  
Author(s):  
MAOAN HAN ◽  
JUNMIN YANG ◽  
DONGMEI XIAO

Homoclinic bifurcation is a difficult and important topic of bifurcation theory. As we know, a general theory for a homoclinic loop passing through a hyperbolic saddle was established by [Roussarie, 1986]. Then the method of stability-changing to find limit cycles near a double homoclinic loop passing through a hyperbolic saddle was given in [Han & Chen, 2000], and further developed by [Han et al., 2003; Han & Zhu, 2007]. For a homoclinic loop passing through a nilpotent saddle there are essentially two different cases, which we distinguish by cuspidal type and smooth type, respectively. For the cuspidal type a general theory was recently established in [Zang et al., 2008]. In this paper, we consider limit cycle bifurcation near a double homoclinic loop passing through a nilpotent saddle by studying the analytical property of the first order Melnikov functions for general near-Hamiltonian systems and obtain the conditions for the perturbed system to have 8, 10 or 12 limit cycles in a neighborhood of the loop with seven different distributions. In particular, for the homoclinic loop of smooth type, a general theory is obtained as a consequence. We finally consider some polynomial systems and find a lower bound of the maximal number of limit cycles as an application of our main results.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550066 ◽  
Author(s):  
Junmin Yang ◽  
Xianbo Sun

In this paper, we first present some general theorems on bifurcation of limit cycles in near-Hamiltonian systems with a nilpotent saddle or a nilpotent cusp. Then we apply the theorems to study the number of limit cycles for some polynomial Liénard systems with a nilpotent saddle or a nilpotent cusp, and obtain some new estimations on the number of limit cycles of these systems.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050006
Author(s):  
Montserrat Corbera ◽  
Claudia Valls

We characterize the phase portraits in the Poincaré disk of all planar polynomial Hamiltonian systems of degree three with a nilpotent saddle at the origin and [Formula: see text]-symmetric with [Formula: see text].


2018 ◽  
Vol 28 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from some polynomial systems with a double homoclinic loop passing through a nilpotent saddle surrounded by a heteroclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles in the following system: [Formula: see text] where [Formula: see text] is a polynomial of degree [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document