scholarly journals Global existence and well-posedness for the Doi-Edwards polymer model

2022 ◽  
Vol 309 ◽  
pp. 142-175
Author(s):  
Wei Luo ◽  
Zhaoyang Yin
Author(s):  
Anca-Voichita Matioc ◽  
Bogdan-Vasile Matioc

AbstractIn this paper we establish the well-posedness of the Muskat problem with surface tension and equal viscosities in the subcritical Sobolev spaces $$W^s_p(\mathbb {R})$$ W p s ( R ) , where $${p\in (1,2]}$$ p ∈ ( 1 , 2 ] and $${s\in (1+1/p,2)}$$ s ∈ ( 1 + 1 / p , 2 ) . This is achieved by showing that the mathematical model can be formulated as a quasilinear parabolic evolution problem in $$W^{\overline{s}-2}_p(\mathbb {R})$$ W p s ¯ - 2 ( R ) , where $${\overline{s}\in (1+1/p,s)}$$ s ¯ ∈ ( 1 + 1 / p , s ) . Moreover, we prove that the solutions become instantly smooth and we provide a criterion for the global existence of solutions.


1994 ◽  
Vol 37 (1) ◽  
pp. 101-118 ◽  
Author(s):  
John M. Chadam ◽  
Hong-Ming Yin

In some chemical reaction–diffusion processes, the reaction takes place only at some local sites, due to the presence of a catalyst. In this paper we study the well-posedness of a model problem of this type. Sufficient conditions are found to ensure global existence and finite time blowup. The blowup rate and the blowup set are also investigated in the case of special nonlinearity.


Author(s):  
Jiang Bo Zhou ◽  
Jun De Chen ◽  
Wen Bing Zhang

We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chao Yang

<p style='text-indent:20px;'>This paper studies the Cauchy problem of Schrödinger equation with inhomogeneous nonlinear term <inline-formula><tex-math id="M1">\begin{document}$ V(x)|\varphi|^{p-1}\varphi $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>. For the case <inline-formula><tex-math id="M3">\begin{document}$ p&gt;1+\frac{4(1+\varepsilon_0)}{n} (0&lt;\varepsilon_0&lt;\frac{2}{n-2}) $\end{document}</tex-math></inline-formula>, by introducing a potential well, we obtain some invariant sets of solution and give a sharp condition of global existence and finite time blowup of solution; for the case <inline-formula><tex-math id="M4">\begin{document}$ p&lt;1+\frac{4}{n} $\end{document}</tex-math></inline-formula>, we obtain the global existence of solution for any initial data in <inline-formula><tex-math id="M5">\begin{document}$ H^1 (\mathbb{R}^n) $\end{document}</tex-math></inline-formula>.</p>


2019 ◽  
Vol 26 (1/2) ◽  
pp. 127-152
Author(s):  
Tarek Saanouni

The initial value problem for a semi-linear high-order heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.


Sign in / Sign up

Export Citation Format

Share Document