Removal and recovery of phosphate using a novel calcium silicate hydrate composite starch cryogel

2022 ◽  
Vol 301 ◽  
pp. 113923
Author(s):  
Tarawee Taweekarn ◽  
Worawit Wongniramaikul ◽  
Aree Choodum
2018 ◽  
Vol 2017 (2) ◽  
pp. 578-591 ◽  
Author(s):  
Lihong Peng ◽  
Hongliang Dai ◽  
Yifeng Wu ◽  
Zheqin Dai ◽  
Xiang Li ◽  
...  

Abstract A novel magnetic calcium silicate hydrate composite (Fe3O4@CSH) was proposed for phosphorus (P) removal and recovery from a synthetic phosphate solution, facilitated by a magnetic separation technique. The Fe3O4@CSH material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta-potential and magnetic curves. The chemical composition and structure of Fe3O4@CSH and the successful surface loading of hydroxyl functional groups were confirmed. Phosphate adsorption kinetics, isotherm, and thermodynamic experiments showed that adsorption reaches equilibrium at 24 h, with a maximum adsorption capacity of 55.84 mg P/g under optimized experimental conditions. Adsorption kinetics fitted well to the pseudo second-order model, and equilibrium data fit the Freundlich isotherm model. Thermodynamic analysis provided a positive value for ΔH° (129.84 KJ/mol) and confirmed that phosphate adsorption on these materials is endothermic. The P-laden Fe3O4@CSH materials could be rapidly separated from aqueous solution by a magnetic separation technique within 1 min. A removal rate of more than 60% was still obtained after eight adsorption/desorption cycles, demonstrating the excellent reusability of the particles. The results demonstrated that the Fe3O4@CSH materials had high P-adsorption efficiency and were reusable.


2021 ◽  
Vol 283 ◽  
pp. 122638
Author(s):  
Zhiyong Liu ◽  
Yuncheng Wang ◽  
Dong Xu ◽  
Chuyue Zang ◽  
Yunsheng Zhang ◽  
...  

2007 ◽  
Vol 309 (2) ◽  
pp. 303-307 ◽  
Author(s):  
Christophe Labbez ◽  
André Nonat ◽  
Isabelle Pochard ◽  
Bo Jönsson

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17369-17376
Author(s):  
Daosheng Sun ◽  
Ziwen Wang ◽  
Rui Ma ◽  
Aiguo Wang ◽  
Gaozhan Zhang

In this study, nano calcium silicate hydrate was used as an early strength agent to promote the compressive strength of concrete at 1 day.


Sign in / Sign up

Export Citation Format

Share Document