phosphate adsorption
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 170)

H-INDEX

65
(FIVE YEARS 13)

2022 ◽  
Vol 305 ◽  
pp. 114361
Author(s):  
Yaniv Freiberg ◽  
Pinchas Fine ◽  
Michael Borisover ◽  
Irit Levkovitch ◽  
Shahar Baram

2022 ◽  
Vol 964 (1) ◽  
pp. 012032
Author(s):  
Le Ba Tran ◽  
Trung Thanh Nguyen ◽  
Tri Thich Le ◽  
Quynh Anh Nguyen Thi ◽  
Phuoc Toan Phan ◽  
...  

Abstract In this study, a potential adsorbent was synthesized from iron salt and cation exchange resin (FeOOH@CR) and applied for phosphate adsorption in batch experiments. The characteristics of FeOOH@CR materials before and after phosphate adsorption were determined by FTIR, XRD, and SEM. The factors affecting the adsorption process such as reaction time, solution pH, material dosage, concentration, temperature, and competing ions were tested. Kinetic, thermodynamic and isothermal models of the adsorption process were applied to study the nature of the adsorption process. The properties of phosphate adsorption, effect of competitive ions and material reusability were also examined. Results showed that the adsorption time reached equilibrium after 48 h and the suitable adsorption condition was found at solution pH of 6.5, material dosage of 5 g/L. In addition, the durability of the material after 5 times of regeneration was investigated with the remained adsorption ability of about 55% as compared to the original one.


2021 ◽  
Vol 7 (SpecialIssue) ◽  
pp. 389-399
Author(s):  
Suwardji Suwardji ◽  
‪I Made Sudantha

The fate of glyphosate in soil and water is dependent on the properties of glyphosate and its envoronement. Behaviour of glyphosate in soil, sediment and water is strongly influenced the way by which it can be adsorbed by soils, sediments, and suspended material in water. The role of soil organic matter, clay mineral, and amorphous minerals on the adsorption of glyphosate depends primarily on the nature and properties of the soil itself and the properties of glyphosate. Environmental factors have some influence on sorption and degradation of glyphosate. Glyphosate is rapidly inactivated in soil, is in part due to adsorption. Some soil properties have been identified strongly influence adsorption of glyphosate, such as clay minerals, composition of cations in exchangeable site of clay and organic matter, unoccupied phosphate adsorption site, degree of humification, and soil pH. Adsorption limits the availability of glyposate for microbial degradation. The sorbed glyphosate is not directly available to microorganisms in soil. Evidence also suggests that not only a strongly sorbed compound such as paraquat but also weakly sorbed compounds such as flumetsulam and picloram can persist for long periods when they are sorbed by soil constituents. This suggests that the interaction between sorption and biodegradation should be considered in predicting the fate of pesticides in soils and sediments.


Author(s):  
Ana Caroline da Silva Soares ◽  
Liliana Pena Naval

Considering the importance of the development of simplified technologies and social control in sanitation actions, this study investigated the use of laterite for phosphorus removal in synthetic effluents, through adsorption, as a low-cost alternative with the possibility of reusing the generated effluent, for communities where access to sanitation is limited. In the experimental design, the variables pH, contact time, granulometry and laterite dosage were used. Factorial planning was used for processing, for optimization and desirability. It was observed that the removal efficiency did not have significant interference in relation to the pH and contact-time variables. The kinetics of the batch experiments showed that the ideal contact time was 6.4 hours and pH of around 4. The adsorption capacity was plotted against equilibrium concentration for the Freundlich and Langmuir isotherms. The Langmuir isotherm was more suitable for phosphorus adsorption. The results show that laterite was effective in phosphorus adsorption in the order of removal of 87%, showing itself to be a potential adsorbent material. Keywords: laterite, phosphate adsorption, simplified effluent treatment.


2021 ◽  
Vol 11 (22) ◽  
pp. 10810
Author(s):  
Hui Luo ◽  
Baojie He ◽  
Wenhao Zhang ◽  
Zhaoqian Jing

Porous asphalt pavement (PAP) system is a widely used treatment measure in sustainable stormwater management and groundwater recharge, but their variable performance in nitrogen (N) and phosphorus (P) removal requires further reinforcement prior to widespread uptake. Two laboratory-scale PAP systems were developed by comparing limestone bedding and zeolite incorporated into modified zeolite powder porous microsphere (MZP-PM) as a filter column under a typical rainfall. The PAP system of zeolite bedding incorporated into MZP-PM (a weight less than 5% of zeolite) removed 74.5% to 90.6% of ammonium (NH4+-N) and 72.9% to 92.4% of total phosphate (TP) from the influent, as compared with 25.7% to 62.7% of NH4+-N and 32.6% to 56.4% of TP by that of the limestone as bed material. This improvement was presumably due to MZP-PM’s high adsorption capacity and surface complexation. The formation of ≡(La)(OH)PO2 was verified to be the dominant pathway for selective phosphate adsorption by MZP-PM and ion-exchange was proved to be the main removal process for ammonium. This study provides promising results for improving N and P removal by modifying a porous asphalt pavement system to include an MZP-PM adsorbent column as a post-treatment.


Author(s):  
Xiaoling Zhang ◽  
Xincong Liu ◽  
Zhuo Zhang ◽  
Ziwei Chen

Abstract A lanthanum modified sludge biochar chitosan (La-SBC-CS) microsphere was successfully synthesized by dropping sludge biochar (BC) and chitosan into an Lanthanum chloride solution. Batch adsorption experiments were conducted to investigate the adsorption kinetics and isotherm. Application of continuous phosphate removal was achieved via lab-scale column reactors. The phosphate adsorption equilibrium data of the La-SBC-CS fitted well with the Freundlich isotherm, with a maximum adsorption amount of 81.54 mg p/g at 25 °C. Characterization of the adsorbent using scanning electron microscopy analysis (SEM), X ray energy spectrum analysis (EDS), X-ray diffraction analysis (XRD) and Fourier infrared analysis (FTIR) techniques suggested that the possible adsorption mechanisms were electrostatic interaction, ligand exchange and complexation. The La-SBC-CS kept 76.37% phosphate removal efficiency after eight recycles. The results of continuous column reactor experiment demonstrated that the breakthrough time increased with an increase in adsorbents filling height, while it decreased with an increase in initial phosphate concentration or flow velocity. YOON model was applied to the continuous experimental data to predict breakthrough curves and determined the characteristic adsorption parameters for process design. This study indicated that the potential for the practical application of La-SBC-CS in phosphate removal from wastewater.


2021 ◽  
Author(s):  
◽  
Raymond Alan Hoare

<p>The surface chemistry of the 001 face of cleaved mica sheets was studied with a view to understanding some of the fundamental processes underlying the phenomenon of fixation of phosphate by soils. Radiochemical techniques were developed to make quantitative studies of the adsorption, an important part of these being practical procedures for obtaining sufficient cleanliness and freedeom from airborne contamination. Lack of uniformity of adsorption, as shown by autoradiography, was taken to indicate contamination, and techniques were developed to avid this. Other techniques enabled the continuous monitoring of the sample during adsorption or desorption kinetic experiments. It was shown that adsorption of phosphate on the untreated mica sheets was low, but the adsorption was greatly enhanced if the mica had been treated with aqueous solutions of certain cations such as gallium, aluminium and iron. Form the measurement of the amount of phosphate adsorbed, as a function of the conditions of aluminium treatment, it was concluded that the phosphate could be absorbed by at least three different processes, all of which could be of importance in phosphate fixation by soils. As well as these processes, which occurred on clean, flat, mica surfaces, there were others, involving the edges of mica and sheets, and unknown, but probably organic, films on both mica and air-water surfaces. These could all be of comparable importance in soils. The kinetic measurements of phosphate adsorption and desorption on aluminium-treated mica indicated that many hours were required for attainment of equilibrium, and were quantitatively consistent with the hypothesis that in some cases the adsorption and desorption kinetics were controlled by diffusion of phosphate into particles of some material, possibly a hydrous oxide, adsorbed on the mica. The existence of such particles was supported by the fact that up to one phosphate molecule per two square Angstrom units of mica surface was adsorbed, (and this did not appear to be a value at which the surface was saturated.) Kinetic measurements of 67 Ga sorption processes were consistent with diffusion of gallium through a thin water film, with a diffusion coefficient several orders of magnitude lower than that of single ions in free solution. This may indicate that the gallium was adsorbing as particles, in agreement with the requirements of the phosphate experiments.</p>


2021 ◽  
Author(s):  
◽  
Raymond Alan Hoare

<p>The surface chemistry of the 001 face of cleaved mica sheets was studied with a view to understanding some of the fundamental processes underlying the phenomenon of fixation of phosphate by soils. Radiochemical techniques were developed to make quantitative studies of the adsorption, an important part of these being practical procedures for obtaining sufficient cleanliness and freedeom from airborne contamination. Lack of uniformity of adsorption, as shown by autoradiography, was taken to indicate contamination, and techniques were developed to avid this. Other techniques enabled the continuous monitoring of the sample during adsorption or desorption kinetic experiments. It was shown that adsorption of phosphate on the untreated mica sheets was low, but the adsorption was greatly enhanced if the mica had been treated with aqueous solutions of certain cations such as gallium, aluminium and iron. Form the measurement of the amount of phosphate adsorbed, as a function of the conditions of aluminium treatment, it was concluded that the phosphate could be absorbed by at least three different processes, all of which could be of importance in phosphate fixation by soils. As well as these processes, which occurred on clean, flat, mica surfaces, there were others, involving the edges of mica and sheets, and unknown, but probably organic, films on both mica and air-water surfaces. These could all be of comparable importance in soils. The kinetic measurements of phosphate adsorption and desorption on aluminium-treated mica indicated that many hours were required for attainment of equilibrium, and were quantitatively consistent with the hypothesis that in some cases the adsorption and desorption kinetics were controlled by diffusion of phosphate into particles of some material, possibly a hydrous oxide, adsorbed on the mica. The existence of such particles was supported by the fact that up to one phosphate molecule per two square Angstrom units of mica surface was adsorbed, (and this did not appear to be a value at which the surface was saturated.) Kinetic measurements of 67 Ga sorption processes were consistent with diffusion of gallium through a thin water film, with a diffusion coefficient several orders of magnitude lower than that of single ions in free solution. This may indicate that the gallium was adsorbing as particles, in agreement with the requirements of the phosphate experiments.</p>


Chemosphere ◽  
2021 ◽  
pp. 133103
Author(s):  
Zhuolin Qing ◽  
Liangjie Wang ◽  
Xinyao Liu ◽  
Zhiwei Song ◽  
Feng Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document