Salvianolic Acids for Injection Alleviates Cerebral Ischemia/Reperfusion Injury by Switching M1/M2 Phenotypes and Inhibiting NLRP3 Inflammasome/Pyroptosis Axis in Microglia In Vivo and In Vitro

2021 ◽  
pp. 113776
Author(s):  
Dai-Chao Ma ◽  
Nan-Nan Zhang ◽  
Yi-Na Zhang ◽  
Hui-Sheng Chen
2021 ◽  
Vol 12 ◽  
Author(s):  
Yong Gu ◽  
Xi Chen ◽  
Shuping Fu ◽  
Wenlan Liu ◽  
Qi Wang ◽  
...  

Isoflavones are major neuroprotective components of a medicinal herb Astragali Radix, against cerebral ischemia-reperfusion injury but the mechanisms of neuroprotection remain unclear. Calycosin and formononetin are two major AR isoflavones while daidzein is the metabolite of formononetin after absorption. Herein, we aim to investigate the synergistic neuroprotective effects of those isoflavones of Astragali Radix against cerebral ischemia-reperfusion injury. Calycosin, formononetin and daidzein were organized with different combinations whose effects observed in both in vitro and in vivo experimental models. In the in vitro study, primary cultured neurons were subjected to oxygen-glucose deprivation plus reoxygenation (OGD/RO) or l-glutamate treatment. In the in vivo study, rats were subjected to middle cerebral artery occlusion to induce cerebral ischemia and reperfusion. All three isoflavones pre-treatment alone decreased brain infarct volume and improved neurological deficits in rats, and dose-dependently attenuated neural death induced by l-glutamate treatment and OGD/RO in cultured neurons. Interestingly, the combined formulas of those isoflavones revealed synergistically activated estrogen receptor (estrogen receptors)-PI3K-Akt signaling pathway. Using ER antagonist and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked the neuroprotective effects of those isoflavones. In conclusion, isoflavones could synergistically alleviate cerebral ischemia-reperfusion injury via activating ER-PI3K-Akt pathway.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094585 ◽  
Author(s):  
Chengli Ling ◽  
Chang Lei ◽  
Manshu Zou ◽  
Xiong Cai ◽  
Yun Xiang ◽  
...  

Objective The therapeutic efficacy of apigenin in PC12 cells and rats remains uncertain. The aim of this study was to investigate the neuroprotective effects of apigenin against cerebral ischemia/reperfusion injury, both in vitro and in vivo. Methods We first treated PC12 cells with cobalt chloride (CoCl2) to create a model of oxidative stress injury. Cell viability was then determined using a multifunctional microplate reader. In addition, reactive oxygen species (ROS) levels, apoptosis, and mitochondrial membrane potentials (MMPs) were examined using high-content cytometer analysis. The efficacy of apigenin treatment was also analyzed in a rat middle cerebral artery occlusion (MCAO) model using TTC staining and neurological deficit scores. Results The half-inhibitory concentration of CoCl2 was 1.2 mM. Pretreatment with 10 µg ⋅ mL−1 apigenin significantly enhanced cell viability, reduced ROS levels, alleviated apoptosis, and improved MMP in PC12 cells with CoCl2-induced injury in vitro. In addition, apigenin treatment in vivo significantly improved neurological deficit scores and reduced infarct areas in MCAO rats. These results suggest that the neuroprotective mechanisms of apigenin may be related to mitochondrial activation. Conclusions Apigenin had excellent neuroprotective effects for the treatment of cerebral ischemia/reperfusion injury in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document