Functional models for entire symmetric operators in rigged de Branges Pontryagin spaces

2021 ◽  
Vol 280 (2) ◽  
pp. 108776
Author(s):  
Volodymyr Derkach ◽  
Harry Dym
2019 ◽  
Vol 16 (4) ◽  
pp. 567-587
Author(s):  
Vadim Mogilevskii

Let $A$ be a symmetric linear relation in the Hilbert space $\gH$ with unequal deficiency indices $n_-A <n_+(A)$. A self-adjoint linear relation $\wt A\supset A$ in some Hilbert space $\wt\gH\supset \gH$ is called an (exit space) extension of $A$. We study the compressions $C (\wt A)=P_\gH\wt A\up\gH$ of extensions $\wt A=\wt A^*$. Our main result is a description of compressions $C (\wt A)$ by means of abstract boundary conditions, which are given in terms of a limit value of the Nevanlinna parameter $\tau(\l)$ from the Krein formula for generalized resolvents. We describe also all extensions $\wt A=\wt A^*$ of $A$ with the maximal symmetric compression $C (\wt A)$ and all extensions $\wt A=\wt A^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators $A$ with equal deficiency indices $n_+(A)=n_-(A)$.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Sign in / Sign up

Export Citation Format

Share Document