scholarly journals Sharp decay estimates for massless Dirac fields on a Schwarzschild background

2021 ◽  
pp. 109375
Author(s):  
Siyuan Ma ◽  
Lin Zhang
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.


2021 ◽  
Vol 54 (1) ◽  
pp. 245-258
Author(s):  
Younes Bidi ◽  
Abderrahmane Beniani ◽  
Khaled Zennir ◽  
Ahmed Himadan

Abstract We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory. Moreover, we showed new decay estimates of global solution.


Author(s):  
Wenhui Chen ◽  
Marcello D’Abbicco ◽  
Giovanni Girardi

AbstractIn this work, we prove the existence of global (in time) small data solutions for wave equations with two dissipative terms and with power nonlinearity $$|u|^p$$ | u | p or nonlinearity of derivative type $$|u_t|^p$$ | u t | p , in any space dimension $$n\geqslant 1$$ n ⩾ 1 , for supercritical powers $$p>{\bar{p}}$$ p > p ¯ . The presence of two dissipative terms strongly influences the nature of the problem, allowing us to derive $$L^r-L^q$$ L r - L q long time decay estimates for the solution in the full range $$1\leqslant r\leqslant q\leqslant \infty $$ 1 ⩽ r ⩽ q ⩽ ∞ . The optimality of the critical exponents is guaranteed by a nonexistence result for subcritical powers $$p<{\bar{p}}$$ p < p ¯ .


Author(s):  
Maria Michaela Porzio

AbstractIn this paper, we study the behavior in time of the solutions for a class of parabolic problems including the p-Laplacian equation and the heat equation. Either the case of singular or degenerate equations is considered. The initial datum $$u_0$$ u 0 is a summable function and a reaction term f is present in the problem. We prove that, despite the lack of regularity of $$u_0$$ u 0 , immediate regularization of the solutions appears for data f sufficiently regular and we derive estimates that for zero data f become the known decay estimates for these kinds of problems. Besides, even if f is not regular, we show that it is possible to describe the behavior in time of a suitable class of solutions. Finally, we establish some uniqueness results for the solutions of these evolution problems.


Sign in / Sign up

Export Citation Format

Share Document