Density functional theory thermal rate constant calculation of hydrogen abstraction reactions of trans-cyc-CF2CF2CF2CHFCHF and cyc-CF2CF2CF2CHFCH2 with OH radicals

2020 ◽  
Vol 229 ◽  
pp. 109415
Author(s):  
S. Rasoul Hashemi ◽  
Meymanat Zokaie ◽  
Vahid Saheb ◽  
S.M.A. Hosseini
2014 ◽  
Vol 118 (16) ◽  
pp. 8379-8386 ◽  
Author(s):  
Glen Allen Ferguson ◽  
Raghunath O. Ramabhadran ◽  
Christopher Trong-Linh Than ◽  
Ranjani Krishnan Paradise ◽  
Krishnan Raghavachari

2015 ◽  
Vol 68 (7) ◽  
pp. 1084 ◽  
Author(s):  
Chin-Hung Lai

In this study, density functional theory calculations, using the M06-2X functional, were performed to investigate the efficiencies of various carbenes in inducing hydrogen abstraction in BH3 through the formation of a Lewis acid–base pair with BH3. The density functional theory results indicate that diamidocarbenes are more efficient in reducing the B–H bond energy of BH3 than diaminocarbenes. Natural bond orbital and combined charge and bond energy analyses were performed to investigate the Lewis acid–base pair formed by BH3 and the title carbenes.


2011 ◽  
Vol 10 (02) ◽  
pp. 231-244 ◽  
Author(s):  
HONG-BO YU ◽  
FENG-CHAO CUI ◽  
YONG-XIA WANG ◽  
HONG-XIA LIU ◽  
JING-YAO LIU

The mechanism and kinetics of the reaction of CH3OCF2CF2OCH3 with OH radicals have been studied theoretically by a direct density functional theory dynamics method. All possible H -abstraction channels and displacement processes taking place on two different conformers of CH3OCF2CF2OCH3 have been taken into consideration. The potential energy surface information including the optimized geometries and harmonic vibrational frequencies of all the stationary points and barrier heights involved in these channels were obtained at the BB1K/6-31+G(d,p) level of theory. The rate constants were calculated using improved canonical variational transition state theory (ICVT) with the small-curvature tunneling correction (SCT) over the temperature range of 200–2000 K. The overall rate constant for the title reaction, which was obtained by considering the weight factor of each conformer from the Boltzman distribution function, is in reasonable agreement with the available experimental value. Three-term Arrhenius expression is fitted to be k T = 1.56 × 10-20 T 2.47 exp (-124.64/ T ) cm 3 molecule-1 s-1 (200–2000 K). Also, the enthalpies of formation of the reactant CH3OCF2CF2OCH3 and product radicals CH3OCF2CF2OCH2 and CH3OCF2CF2O , which lack experimental or theoretical data, were evaluated via applying isodesmic reactions.


2021 ◽  
Author(s):  
R. Masmoudi ◽  
S. Khettaf ◽  
A. Soltani ◽  
A. Dibi ◽  
L. Messaadia ◽  
...  

Abstract In this work, density functional theory is used to study the local reactivity of cephalexin (CLX) to radical attack and explain the mechanism of the reaction between CLX and hydroxyl radical attack leading to degradation byproducts. The reaction between •OH and CLX is supposed to lead to either an addition of a hydroxyl radical or an abstraction of a hydrogen. The results showed that the affinity of cephalexin for addition reactions increases as it passes from the gas to the aqueous phase and decreases as it passes from the neutral to the ionized form. Thermodynamic data confirmed that OH addition radicals (Radd) are thermodynamically favored over H abstraction radicals (Rabs). The ecotoxicity assessments of CLX and its byproducts are estimated from the acute toxicities toward green algae, Daphnia and fish. The formation of byproducts is safe for aquatic organisms, and only one byproduct is harmful to Daphnia.


Sign in / Sign up

Export Citation Format

Share Document