hydrogen molecules
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 92)

H-INDEX

58
(FIVE YEARS 5)

2022 ◽  
Vol 130 (3) ◽  
pp. 395
Author(s):  
В.Е. Привалов ◽  
В.Г. Шеманин

Computer simulation of the Raman lidar equation for measurement of the hydrogen molecules at the concentration level of 1013 cm-3 and higher in atmosphere at the ranging distances up to 100 m in the synchronous photon counting mode and selection of such a lidar optimal parameters have been fulfilled. It is shown that for hydrogen molecules concentration of N(z)=1013 cm-3 measurement at the distances from 5 to 100 m the measurement time t is in the range from 3.83 s to 26.5 min, for measurement of concentration N(z) = 1015 cm-3 - from 38 ms to 15.9 s and for the concentration measurement of N(z) = 1017 cm-3 - already from 0.4 ms to 160 ms, respectively.


Author(s):  
Shuai Wang ◽  
Yipin Lv ◽  
Xilong Wang ◽  
Daowei Gao ◽  
Aijun Duan ◽  
...  

A well-defined catalyst with platinum (Pt) and gold (Au) encapsulated in micropore and mesopore of micro-mesoporous zeolite (TMSN), respectively, was designed to investigate the original active sites and kinetics of semi-hydrogenation. Specifically, hydrogen molecules are dissociated on Pt nanoclusters (NCs) to form hydrogen atoms that migrate to the surfaces of TMSN zeolite and Au nanoparticles (NPs). Meanwhile, the Au NPs with inferior H dissociation capability in the mesopore can be served as the detector and controller of hydrogen spillover. The Pt NCs in micropore act as H dissociation sites while both the Au NPs and zeolite surface are identified as the semi-hydrogenation sites. Noteworthy, the Pt-Au/TMSN catalyst with double active sites exhibits higher selectivity and rate constant ratio for semi-hydrogenation than Pt/TMSN, as well as higher turnover frequency (TOF) than Au/MSN. This work creates an effective regulation strategy of hydrogen spillover for improving active sites and kinetics of semi-hydrogenation.


2021 ◽  
Author(s):  
Wanjun Gong ◽  
Lingdong Jiang ◽  
Yanxia Zhu ◽  
Mengna Jiang ◽  
Danyang Chen ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1524
Author(s):  
Seul-Yi Lee ◽  
Ji-Hye Park ◽  
Young-Jung Heo ◽  
Eun-Sang Lee ◽  
Soo-Jin Park

Significant efforts have been directed toward the identification of carbonaceous materials that can be utilized for hydrogen uptake in order to develop on-board automotive systems with a gravimetric capacity of 5.5 wt.%, thus meeting the U.S. Department of Energy technical targets. However, the capacity of hydrogen storage is limited by the weak interaction between hydrogen molecules and the carbon surface. Cigarette butts, which are the most abundant form of primary plastic waste, remain an intractable environmental pollution problem. To transform this source of waste into a valuable adsorbent for hydrogen uptake, we prepared several forms of oxygen-rich cigarette butt-derived porous carbon (CGB-AC, with the activation temperature range of 600 and 900 °C). Our experimental investigation revealed that the specific surface area increased from 600 to 700 °C and then decreased as the temperature rose to 900 °C. In contrast, the oxygen contents gradually decreased with increasing activation temperature. CGB-AC700 had the highest H2 excess uptake () of 8.54 wt.% at 77 K and 20 bar, which was much higher than that of porous carbon reported in the previous studies. We found that the dynamic interaction between the porosity and the oxygen content determined the hydrogen storage capacity. The underlying mechanisms proposed in the present study would be useful in the design of efficient hydrogen storage because they explain the interaction between positive carbonaceous materials and negative hydrogen molecules in quadrupole orbitals.


2021 ◽  
Vol 11 (24) ◽  
pp. 11687
Author(s):  
Abdul Malik P. Peedikakkal ◽  
Isam H. Aljundi

In metal-organic frameworks (MOFs), mixed-metal clusters have the opportunity to adsorb hydrogen molecules due to a greater charge density of the metal. Such interactions may subsequently enhance the gravimetric uptake of hydrogen. However, only a few papers have explored the ability of mixed-metal MOFs to increase hydrogen uptake. The present work reveals the preparation of mixed metal metal-organic frameworks M-MOF-5 (where M = Ni2+, Co2+, and Fe2+) (where MOF-5 designates MOFs such as Zn2+ and 1,4-benzenedicarboxylic acid ligand) using the post-synthetic exchange (PSE) technique. Powder X-ray diffraction patterns and scanning electron microscopy images indicate the presence of crystalline phases after metal exchange, and the inductively coupled plasma–mass spectroscopy analysis confirmed the exchange of metals by means of the PSE technique. The nitrogen adsorption isotherms established the production of microporous M-MOF-5. Although the additional metal ions decreased the surface area, the exchanged materials displayed unique features in the gravimetric uptake of hydrogen. The parent MOF-5 and the metal exchanged materials (Ni-MOF-5, Co-MOF-5, and Fe-MOF-5) demonstrated hydrogen capacities of 1.46, 1.53, 1.53, and 0.99 wt.%, respectively. The metal-exchanged Ni-MOF-5 and Co-MOF-5 revealed slightly higher H2 uptake in comparison with MOF-5; however, the Fe-MOF-5 showed a decrease in uptake due to partial discrete complex formation (discrete complexes with one or more metal ions) with less crystalline nature. The Sips model was found to be excellent in describing the H2 adsorption isotherms with a correlation coefficient ≅ 1. The unique hydrogen uptakes of Ni− and Co-MOF-5 shown in this study pave the way for further improvement in hydrogen uptake.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1497
Author(s):  
Jun-Young Cho ◽  
Hahyeon Kim ◽  
Jeong-Eun Oh ◽  
Boyoung Y. Park

Here, we review liquid organic hydrogen carriers (LOHCs) as a potential solution to the global warming problem due to the increased use of fossil fuels. Recently, hydrogen molecules have attracted attention as a sustainable energy carrier from renewable energy-rich regions to energy-deficient regions. The LOHC system is one a particularly promising hydrogen storage system in the “hydrogen economy”, and efficient hydrogen mass production that generates only benign byproducts can be applied in the industry. Therefore, this article presents hydrogenation and dehydrogenation, using homogeneous or heterogeneous catalysts, for several types of LOHCs, including formic acid/formaldehyde/ammonia, homocyclic compounds, nitrogen- and oxygen-containing compounds. In addition, it introduces LOHC system reactor types.


2021 ◽  
Vol 923 (1) ◽  
pp. 71
Author(s):  
Masashi Tsuge ◽  
Akira Kouchi ◽  
Naoki Watanabe

Abstract Hydrogen molecules have two nuclear spin isomers: ortho-H2 and para-H2. The ortho-to-para ratio (OPR) is known to affect chemical evolution as well as gas dynamics in space. Therefore, understanding the mechanism of OPR variation in astrophysical environments is important. In this work, the nuclear spin conversion (NSC) processes of H2 molecules on diamond-like carbon and graphite surfaces are investigated experimentally by employing temperature-programmed desorption and resonance-enhanced multiphoton ionization methods. For the diamond-like carbon surface, the NSC time constants were determined at temperatures of 10–18 K and from 3900 ± 800 s at 10 K to 750 ± 40 s at 18 K. Similar NSC time constants and temperature dependence were observed for a graphite surface, indicating that bonding motifs (sp3 or sp2 hybridization) have little effect on the NSC rates.


2021 ◽  
Vol 945 (1) ◽  
pp. 012001
Author(s):  
Syed Amir Abbas Shah Naqvi ◽  
Pek-Lan Toh ◽  
Suh-Miin Wang ◽  
Yao-Cong Lim ◽  
Lee-Sin Ang ◽  
...  

Abstract In this study, we reported the adsorption of two hydrogen (H2) molecules on six boron nitride (BN) studied models with or without adopted by one of the elements from Group IV. By employing the computational method of density functional theory (DFT), the hydrogen binding energies and electronic structures were analyzed and discussed. The computed results presented that the most favorable adsorption sites were found for the two H2 molecules in all studied systems. The computed optimal binding energies of all BN studied systems were determined to be 0.01 eV – 0.05 eV per H2 molecule, which is smaller than that of the previous literature study. Moreover, the energies of HOMO–LUMOs were predicted in the range of 1.64 eV – 6.18 eV. For the surface plots of molecular electrostatic potentials (MEPs), the H atoms at the N–edges possess the most positive electrostatic potentials, while the negative electrostatic potentials fall in the atoms of H at the B–edges. A similar trend was presented on the distribution of atomic charge. Using the scheme of Mulliken population analysis (MPA), there are two different charge values on the atom of H in this study. The H atoms at the B–edges possess the negative charges, whereas the positive charge values were found on the atoms of H at the N–edges. In addition, the findings also noted that the positive charge values were presented for all B atoms in the study. While the negative charges fall in the atoms of N.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6845
Author(s):  
Kai Ma ◽  
Erfei Lv ◽  
Di Zheng ◽  
Weichun Cui ◽  
Shuai Dong ◽  
...  

Based on density functional theory calculation, we screened suitable Ti-decorated carbon-based hydrogen adsorbent structures. The adsorption characteristics and adsorption mechanism of hydrogen molecules on the adsorbent were also discussed. The results indicated that Ti-decorated double vacancy (2 × 2) graphene cells seem to be an efficient material for hydrogen storage. Ti atoms are stably embedded on the double vacancy sites above and below the graphene plane, with binding energy higher than the cohesive energy of Ti. For both sides of Ti-decorated double vacancy graphene, up to six H2 molecules can be adsorbed around each Ti atom when the adsorption energy per molecule is −0.25 eV/H2, and the gravimetric hydrogen storage capacity is 6.67 wt.%. Partial density of states (PDOS) analysis showed that orbital hybridization occurs between the d orbital of the adsorbed Ti atom and p orbital of C atom in the graphene layer, while the bonding process is not obvious during hydrogen adsorption. We expect that Ti-decorated double vacancy graphene can be considered as a potential hydrogen storage medium under ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document