scholarly journals High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility

2013 ◽  
Vol 40 ◽  
pp. 86-104 ◽  
Author(s):  
Raymond E. Gordnier ◽  
Satish Kumar Chimakurthi ◽  
Carlos E.S. Cesnik ◽  
Peter J. Attar
Author(s):  
Katie Byl

This article outlines a new control approach for flapping-wing micro-aerial vehicles (MAVs), inspired both by biological systems and by the need for lightweight actuation and control solutions. In our approach, the aerodynamic forces required for agile motions are achieved indirectly, by modifying passive impedance properties that couple motion of the power stroke to the angle of attack (AoA) of the wing. This strategy is theoretically appealing because it can exploit an invariant, cyclical power stroke, for efficiency, and because an impedance-adjusting strategy should also require lower bandwidth, weight, and power than direct, intra-wingbeat control of AoA. We examine the theoretical range of control torques and forces that can be achieved using this method and conclude that it is a plausible method of control. Our results demonstrate the potential of a passive dynamic design and control approach in reducing mechanical complexity, weight and power consumption of an MAV while achieving the aerodynamic forces required for the types of high-fidelity maneuvers that drive current interest in autonomous, flapping-wing robotics.


2008 ◽  
Vol 24 (2) ◽  
pp. 183-199 ◽  
Author(s):  
S. Heathcote ◽  
Z. Wang ◽  
I. Gursul

2021 ◽  
Author(s):  
Erick Johnson ◽  
Ryan Schwab ◽  
Mark Jankauski

Flapping, flexible insect wings deform during flight from aerodynamic and inertial forces. This deformation is believed to enhance aerodynamic and energetic performance. However, the predictive models used to describe flapping wing fluid-structure interaction (FSI) often rely on high fidelity computational solvers such as computational fluid dynamics (CFD) and finite element analysis (FEA). Such models require lengthy solution times and may obscure the physical insights available to analytical models. In this work, we develop a reduced order model (ROM) of a wing experiencing single-degree-of-freedom flapping. The ROM is based on deformable blade element theory and the assumed mode method. We compare the ROM to a high-fidelity CFD/FEA model and a simple experiment comprised of a mechanical flapper actuating a paper wing. Across a range of flapping-to-natural frequency ratios relevant to flying insects, the ROM predicts wingtip deflection five orders of magnitude faster than the CFD/FEA model. Both models are resolved to predict wingtip deflection within 30% of experimentally measured values. The ROM is then used to identify how the physical forces acting on the wing scale relative to one another. We show that, in addition to inertial and aerodynamic forces, added mass and aerodynamic damping influence wing deformation nontrivially.


2017 ◽  
Vol 40 (8) ◽  
pp. 2121-2132 ◽  
Author(s):  
S. F. Armanini ◽  
M. Karásek ◽  
G. C. H. E. de Croon ◽  
C. C. de Visser

Author(s):  
Wei Shyy ◽  
Hikaru Aono ◽  
Chang-kwon Kang ◽  
Hao Liu

2018 ◽  
Vol 17 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Daniel Dürr ◽  
Ute-Christine Klehe

Abstract. Faking has been a concern in selection research for many years. Many studies have examined faking in questionnaires while far less is known about faking in selection exercises with higher fidelity. This study applies the theory of planned behavior (TPB; Ajzen, 1991 ) to low- (interviews) and high-fidelity (role play, group discussion) exercises, testing whether the TPB predicts reported faking behavior. Data from a mock selection procedure suggests that candidates do report to fake in low- and high-fidelity exercises. Additionally, the TPB showed good predictive validity for faking in a low-fidelity exercise, yet not for faking in high-fidelity exercises.


Sign in / Sign up

Export Citation Format

Share Document