A symmetric implementation of pressure-based fluid–structure interaction for nonlinear dynamic analysis of arch dams

2017 ◽  
Vol 69 ◽  
pp. 34-55 ◽  
Author(s):  
Omid Omidi ◽  
Vahid Lotfi
Author(s):  
Marie Pomarede ◽  
Erwan Liberge ◽  
Aziz Hamdouni ◽  
Elisabeth Longatte ◽  
Jean-Franc¸ois Sigrist

Tube bundles in steam boilers of nuclear power plants and nuclear on-board stokehold are known to be exposed to high levels of vibrations. This coupled fluid-structure problem is very complex to numerically set up, because of its three-dimensional characteristics and because of the large number of degrees of freedom involved. A complete numerical resolution of such a problem is currently not viable, all the more so as a precise understanding of this system behaviour needs a large amount of data, obtained by very expensive calculations. We propose here to apply the now classical reduced order method called Proper Orthogonal Decomposition to a case of 2D flow around a tube bundle. Such a case is simpler than a complete steam generator tube bundle; however, it allows observing the POD projection behaviour in order to project its application on a more realistic case. The choice of POD leads to reduced calculation times and could eventually allow parametrical investigations thanks to a low data quantity. But, it implies several challenges inherent to the fluid-structure characteristic of the problem. Previous works on the dynamic analysis of steam generator tube bundles already provided interesting results in the case of quiescent fluid [J.F. Sigrist, D. Broc; Dynamic Analysis of a Steam Generator Tube Bundle with Fluid-Structure Interaction; Pressure Vessel and Piping, July 27–31, 2008, Chicago]. Within the framework of the present study, the implementation of POD in academic cases (one-dimensional equations, 2D-single tube configuration) is presented. Then, firsts POD modes for a 2D tube bundle configuration is considered; the corresponding reduced model obtained thanks to a Galerkin projection on POD modes is finally presented. The fixed case is first studied; future work will concern the fluid-structure interaction problem. Present study recalls the efficiency of the reduced model to reproduce similar problems from a unique data set for various configurations as well as the efficiency of the reduction for simple cases. Results on the velocity flow-field obtained thanks to the reduced-order model computation are encouraging for future works of fluid-structure interaction and 3D cases.


2011 ◽  
Vol 23 (6) ◽  
pp. 777-783 ◽  
Author(s):  
Cai-qin Wu ◽  
Cheng Hua ◽  
Lin Yang ◽  
Pei-dong Dai ◽  
Tian-yu Zhang ◽  
...  

Author(s):  
B. Asgarian ◽  
M. A. Roshandel Tavana ◽  
R. H. Soltani

Offshore platforms in seismically active areas should be designed to survive severe earthquake excitations with no global structural failure. In seismic design of offshore platforms, it is often necessary to perform a dynamic analysis that accounts for nonlinear soil-pile-structures interaction effects. Nonlinear dynamic analysis for offshore structures has been a major challenge in marine structural and earthquake engineering. In this paper, nonlinear dynamic analysis of jacket type offshore platforms considering soil-pile-structure interaction subjected to strong ground motion have been studied. A jacket type offshore platform is included of piles, jacket and topside with different behaviors in seismic loading. Both jacket and pile elements have been modeled using fiber cross-sections. In this paper, free field ground motion analysis with respect to bedrock excitations has been done using nonlinear stress-strain relations for soil. This model has been developed using Open System for Earthquake Engineering Simulation (OpenSEES) software. In this paper, nonlinear seismic response analysis of an existing sample offshore platform in Persian Gulf subjected to strong ground motions in different bedrock depths has been performed and the results in terms of lateral deflections of platform, soil layers displacement-time history and acceleration response spectra of pile head, top of jacket and deck have been presented.


2007 ◽  
Vol 237 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Jean-François Sigrist ◽  
Daniel Broc ◽  
Christian Lainé

Sign in / Sign up

Export Citation Format

Share Document