ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
Latest Publications


TOTAL DOCUMENTS

134
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By ASMEDC

9780791854518

Author(s):  
John Mahon ◽  
Paul Cheeran ◽  
Craig Meskell

An experimental study of the surface spanwise pressure on a cylinder in the third row of two normal triangular tube arrays (P/d = 1.32 and 1.58) with air cross flow has been conducted. A range of flow velocities were examined. The correlation of surface pressure fluctuations due to various vibration excitation mechanisms along the span of heat exchanger tubes has been assessed. The turbulent buffeting is found to be uncorrelated along the span which is consistent with generally accepted assumptions in previous studies. Vortex shedding and acoustic resonances were well correlated along the span of the cylinder, with correlations lengths approaching the entire length of the cylinder. Jet switching was observed in the pitch ratio of 1.58 and was found to be correlated along the cylinder, although the spatial behaviour is complex. This result suggests that the excitation force used in fretting wear models may need to be updated to include jet switching in the calculation.


Author(s):  
Mitra Esmailzadeh ◽  
Aouni A. Lakis

A method is presented to predict the root mean square displacement response of an open curved thin shell structure subjected to a turbulent boundary-layer-induced random pressure field. The basic formulation of the dynamic problem is an efficient approach combining classic thin shell theory and the finite element method. The displacement functions are derived from Sanders’ thin shell theory. A numerical approach is proposed to obtain the total root mean square displacements of the structure in terms of the cross-spectral density of random pressure fields. The cross-spectral density of pressure fluctuations in the turbulent pressure field is described using the Corcos formulation. Exact integrations over surface and frequency lead to an expression for the total root mean square displacement response in terms of the characteristics of the structure and flow. An in-house program based on the presented method was developed. The total root mean square displacements of a curved thin blade subjected to turbulent boundary layers were calculated and illustrated as a function of free stream velocity and damping ratio. A numerical implementation for the vibration of a cylinder excited by fully developed turbulent boundary layer flow was presented. The results compared favorably with those obtained using software developed by Lakis et al.


Author(s):  
Thomas Shurtz ◽  
Daniel Maynes ◽  
Jonathan Blotter

This paper presents an approach using numerical simulations that have been used to characterize pipe vibration resulting from fully developed turbulent flow in a straight pipe. The vibration levels as indicated by; pipe surface displacement, velocity, and acceleration are characterized in terms of the influences of geometric and material properties of the pipe, and the effects of varying flow velocity, fluid density and viscosity have considered Reynold’s numbers ranging from 9.1×104 – 1.14×106. A large eddy simulation fluid model was coupled with a finite element structural model to simulate the fluid structure interaction using both one-way and two-way coupled techniques. The one-way technique passes the spatially and temporally varying wall pressure from a completed flow solution with fixed wall boundaries to the structural model. The structural model is then solved for wall displacements. The two-way technique involves the additional passing of wall displacement back to the fluid model which is then resolved given the new boundary location. The structural and fluid models are thus continually updated until convergence is reached at each time step. The results indicate a strong nearly quadratic dependence of pipe wall displacement on fluid average velocity. This relationship has also been verified in experimental investigations of pipe vibration. The results also indicate the pipe vibration has a power law type dependence on several variables. Dependencies on investigated variables are non-dimensionalized and assembled to develop a functional relationship that characterizes turbulence induced pipe vibration.


Author(s):  
Mahmoud Hamadiche

A non linear mathematical model addressing the passive mechanism of the cochlea is proposed in this work. In this respect, the interaction between the basilar membrane seen as an elastic solid and fluids in both scala vestibuli and tympani is developed. Via the fluid/solid interface, a full fluid/solid interaction is taking into account. Furthermore a significant improvement of the existing models has been made in both fluid flow modelling and solid modelling. In the present paper, the flow is three dimensional and the solid is non homogeneous two dimensional membrane where the material parameters depend only on the axial distance. The problem formulation leads to a system of non linear partial differential equations. Solution of the linearized system of partial differential equations of the proposed approach is presented. The numerical results obvious a lower and upper limits of the cochlea resonance frequency versus the material parameters of the basilar membrane. It is shown that a monochromatic acoustic wave energises only a portion of the basilar membrane and the location of the excited portion depends on the frequency of the incident acoustic wave. Those results explain the ability of the cochlea in deciphering the frequency of sound with high resolution in striking similarity with the known experimental results. The mathematical model shows that the excited strip of the basilar membrane by a monochromatic acoustic wave is very small when a transverse wave exists in the basilar membrane. Thus, a transverse wave improves highly the resolution of the cochlea in deciphering the high frequency of the incident acoustic wave.


Author(s):  
Kunihiko Ishihara

As tube banks are set in a duct in a boiler and a heat exchanger, the resonance phenomenon or the self sustained tone are generated due to the interference between vortex shedding and the acoustic characteristics of the duct. It is necessary to know the resonance frequency of the duct, namely sound speed, for avoiding any trouble that may arise. In general, it is said that the sound speed decreases in the duct with tube banks and an evaluation formula is given. However, this formula is often used for the perpendicular direction of the flow. We wanted to know whether this formula would be able to be used for the flow direction and for various arrays of patterns or not. In this paper, the applicability of this expression is discussed by using FEM analysis and experiments.


Author(s):  
Ian J. Taylor ◽  
Andrew C. Robertson

On wet and windy days, the inclined cables of cable-stayed bridges can experience large amplitude, potentially damaging oscillations known as Rain-Wind Induced Vibration (RWIV). The phenomenon is believed to be the result of a complicated nonlinear interaction between rivulets of rain water that run down the cables and the wind loading on the cables due to the unsteady aerodynamic flow field. A numerical method has been developed at the University of Strathclyde, to simulate aspects of RWIV, the results of which can be used to assess the importance of the water rivulets on the instability. This combines a Discrete Vortex Method solver to determine the external flow field and unsteady aerodynamic loading and a pseudo-spectral solver based on lubrication theory to model the water on the surface of the body and which is used to determine the evolution and growth of the water rivulets under external loading. These two models are coupled to simulate the interaction between the aerodynamic field and the thin liquid film on a horizontal circular cylinder. The results illustrate the effects of various loading combinations, and importantly demonstrate rivulet formation in the range of angles previous research has indicated that these may suppress the Karman vortex and lead to a galloping instability. These rivulets are found to be of self limiting thickness in all cases.


Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi ◽  
Takashi Tsuji ◽  
Michiyasu Noda ◽  
Minoru Kato ◽  
...  

Vibration experiments for pressure pulsation behavior were made using actual size mock-up piping of nuclear power facilities. The mock-up was a closed loop consisting of a three-strand plunger pump, tanks, piping and valves. It was 40 m long to allow interaction of the acoustic resonance frequency of fluid inside with the mechanical natural frequency of the piping. The influence of valve closing and opening operations to change inner pressure during pump operations on the pulsation boundary condition was investigated in this study. A drastic change in the boundary condition of the acoustic resonance behavior by using a slightly different valve opening ratio to set a different inner pressure was shown in the experimental results. The phenomenon was numerically simulated by using the method of characteristics. The simulation results showed that the boundary condition of the acoustic resonance changed from the closing-opening condition to the closing-closing condition when the valve opening ratio was changed slightly from 10% to 15%. This indicated that the boundary condition of the acoustic resonance had a pulsed change. Therefore, the boundary condition of the acoustic resonance was sensitive to a slight change of the valve opening ratio.


Author(s):  
Erick Reyes ◽  
Shane Finnegan ◽  
Craig Meskell

It is well known that the periodic vortex shedding from bluff bodies in a duct can excite the transverse acoustic mode if the frequencies are comparable. There is a considerable body of experimental work investigating this phenomenon for multiple cylinders. Numerical studies are somewhat less common, partially because it is difficult to couple the acoustics and the hydrodynamic field. This paper implements a hydrodynamic analogy proposed by Tan et al. in which the acoustic field is represented by a velocity excitation of the incompressible hydrodynamics at the domain extents. Two alternatives to this boundary condition are considered: rigid body vibration and surface potential flow. In all three cases, the flow field for two tandem cylinders with a spacing ratio of 2.5D has been simulated with uRANS and an RSM turbulence model. It has been found that a rigid body vibration is not a good model of acoustic excitation. However, imposing a potential flow at the surface of the cylinders yields promising results. The success of the new boundary condition implies that the coupling between the acoustic field and the hydrodynamics is not reorganizing the wake directly, but rather simply modifying the generation of vorticity at the surface. Furthermore, it is envisaged that the new modeling approach will be easier to implement for complex geometries, such as tube arrays.


Author(s):  
Dana Giacobbi ◽  
Stephanie Rinaldi ◽  
Christian Semler ◽  
Michael P. Pai¨doussis

This paper investigates the dynamics of a slender, flexible, aspirating cantilevered pipe, ingesting fluid at its free end and conveying it towards its clamped end. The problem is interesting not only from a fundamental perspective, but also because applications exist, notably in ocean mining [1]. First, the need for the present work is demonstrated through a review of previous research into the topic — spanning many years and yielding often contradictory results — most recently concluding that the system loses stability by flutter at relatively low flow velocities [2]. In the current paper, that conclusion is refined and expanded upon by exploring the problem in three ways: experimentally, numerically and analytically. First, air-flow experiments, in which the flow velocity of the fluid was varied and the frequency and amplitude of oscillation of the pipe were measured, were conducted using different elastomer pipes and intake shapes. Second, a fully-coupled Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) model was developed in ANSYS in order to simulate experiments and corroborate experimental results. Finally, using an analytical approach, the existing linear equation of motion describing the system was significantly improved upon, and then solved via the Galerkin method in order to determine its stability characteristics. Heavily influenced by a CFD analysis, the proposed analytical model is different from previous ones, most notably because of the inclusion of a two-part fluid depressurization at the intake. In general, both the actual and numerical experiments suggest a first-mode loss of stability by flutter at relatively low flow velocities, which agrees with the results from the new analytical model.


Author(s):  
E. Ghavanoo ◽  
F. Daneshmand ◽  
M. Amabili

The mechanical behavior of a eukaryotic cell is mainly determined by its cytoskeleton. Microtubules immersed in cytosol are a central part of the cytoskeleton. Cytosol is the viscous fluid in living cells. The microtubules permanently oscillate in the cytosol. In this study, two-dimensional vibration of a single microtubule in living cell is investigated. The Donnell’s shell theory equations for orthotropic materials is used to model the microtubule whereas the motion of the cytosol is modeled as Stokes flow characterized by a small Reynolds number with no-slip condition at microtubule-cytosol interface. The stress field in the cytosol induced by vibrating microtubule is determined analytically and the coupled vibrations of the microtubule-cytoplasm system are investigated. A coupled polynomial eigenvalue problem is developed in the present study and the variations of eigenvalues of coupled system with cytosol dynamic viscosity, microtubule circumferential Young’s modulus and circumferential wave number are examined.


Sign in / Sign up

Export Citation Format

Share Document