A combined Multiple Time Scales and Harmonic Balance approach for the transient and steady-state response of nonlinear aeroelastic systems

2018 ◽  
Vol 80 ◽  
pp. 132-144 ◽  
Author(s):  
M. Berci ◽  
G. Dimitriadis
Author(s):  
Yousof Azizi ◽  
Patricia Davies ◽  
Anil K. Bajaj

Vehicle occupants are exposed to low frequency vibration that can cause fatigue, lower back pain, spine injuries. Therefore, understanding the behavior of a seat-occupant system is important in order to minimize these undesirable vibrations. The properties of seating foam affect the response of the occupant, so there is a need for good models of seat-occupant systems through which the effects of foam properties on the dynamic response can be directly evaluated. In order to understand the role of flexible polyurethane foam in characterizing the complex seat-occupant system behavior better, the response of a single-degree-of-freedom foam-mass system, which is the simplest model representing a seat-occupant system, is studied. The incremental harmonic balance method is used to determine the steady-state behavior of the foam-mass system subjected to sinusoidal base excitation. This method is used to reduce the time required to generate the steady-state response at the driving frequency and at harmonics of the driving frequency from that required when using direct time-integration of the governing equations to determine the steady state response. Using this method, the effects of different viscoelastic models, riding masses, base excitation levels and damping coefficients on the response are investigated.


Sign in / Sign up

Export Citation Format

Share Document