Predictions of the Periodic Response of a Single-Degree-of-Freedom Foam-Mass System by Using Incremental Harmonic Balance

Author(s):  
Yousof Azizi ◽  
Patricia Davies ◽  
Anil K. Bajaj

Vehicle occupants are exposed to low frequency vibration that can cause fatigue, lower back pain, spine injuries. Therefore, understanding the behavior of a seat-occupant system is important in order to minimize these undesirable vibrations. The properties of seating foam affect the response of the occupant, so there is a need for good models of seat-occupant systems through which the effects of foam properties on the dynamic response can be directly evaluated. In order to understand the role of flexible polyurethane foam in characterizing the complex seat-occupant system behavior better, the response of a single-degree-of-freedom foam-mass system, which is the simplest model representing a seat-occupant system, is studied. The incremental harmonic balance method is used to determine the steady-state behavior of the foam-mass system subjected to sinusoidal base excitation. This method is used to reduce the time required to generate the steady-state response at the driving frequency and at harmonics of the driving frequency from that required when using direct time-integration of the governing equations to determine the steady state response. Using this method, the effects of different viscoelastic models, riding masses, base excitation levels and damping coefficients on the response are investigated.

1978 ◽  
Vol 100 (1) ◽  
pp. 193-198 ◽  
Author(s):  
R. K. Miller

A physical model for hardening hysteresis is presented. An approximate analytical technique is used to determine the steady-state response of a single-degree-of-freedom system and a multi-degree-of-freedom system incorporating this model. Certain critical model parameters which determine the general nature of the responses are identified.


1975 ◽  
Vol 97 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
G. B. Warburton

The normal mode method is used to investigate the reduction in the steady-state response of a simply supported cylindrical shell when conventional absorbers are attached to the shell. Two types of excitation are considered: (a) a single radial harmonic force, and (b) a harmonic pressure distributed over the shell surface. The effect upon response of varying the absorber parameters is studied. Optimum conditions for specific cases are obtained and compared with those required to minimize response when absorbers are added to cantilever beams and to the classical single degree of freedom system.


2000 ◽  
Vol 7 (4) ◽  
pp. 179-194 ◽  
Author(s):  
A.A. Al-Qaisia ◽  
M.N. Hamdan ◽  
B.O. Al-Bedoor

This paper presents a study on the nonlinear steady state response of a slender beam partially immersed in a fluid and carrying an intermediate mass. The model is developed based on the large deformation theory with the constraint of inextensible beam, which is valid for most engineering structures. The Lagrangian dynamics in conjunction with the assumed mode method is utilized in deriving the non-linear unimodal temporal equation of motion. The distributed and concentrated sinusoidal loads are accounted for in a consistent manner using the assumed mode method. The non-linear equation of motion is, analytically, solved using the single term harmonic balance (SHB) and the two terms harmonic balance (2HB) methods. The stability of the system, under various loading conditions, is investigated. The results are presented, discussed and some conclusions on the partially immersed beam nonlinear dynamics are extracted.


Sign in / Sign up

Export Citation Format

Share Document