Set-membership state estimation subject to uniform quantization effects and communication constraints

2017 ◽  
Vol 354 (15) ◽  
pp. 7012-7027 ◽  
Author(s):  
Shuai Liu ◽  
Guoliang Wei ◽  
Yan Song ◽  
Derui Ding
Author(s):  
Hao Yang ◽  
Yilian Zhang ◽  
Wei Gu ◽  
Fuwen Yang ◽  
Zhiquan Liu

This paper is concerned with the state estimation problem for an automatic guided vehicle (AGV). A novel set-membership filtering (SMF) scheme is presented to solve the state estimation problem in the trajectory tracking process of the AGV under the unknown-but-bounded (UBB) process and measurement noises. Different from some existing traditional filtering methods, such as Kalman filtering method and [Formula: see text] filtering method, the proposed SMF scheme is developed to provide state estimation sets rather than state estimation points for the system states to effectively deal with UBB noises and reduce the requirement of the sensor precision. Then, in order to obtain the state estimation ellipsoids containing the true states, a set-membership estimation algorithm is designed based on the AGV physical model and S-procedure technique. Finally, comparison examples are presented to illustrate the effectiveness of the proposed SMF scheme for an AGV state estimation problem in the present of the UBB noises.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 7 ◽  
Author(s):  
Christoph Kawan

In the context of state estimation under communication constraints, several notions of dynamical entropy play a fundamental role, among them: topological entropy and restoration entropy. In this paper, we present a theorem that demonstrates that for most dynamical systems, restoration entropy strictly exceeds topological entropy. This implies that robust estimation policies in general require a higher rate of data transmission than non-robust ones. The proof of our theorem is quite short, but uses sophisticated tools from the theory of smooth dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document