The characteristics and self-time-delay synchronization of two-time-delay complex Lorenz system

2019 ◽  
Vol 356 (1) ◽  
pp. 334-350 ◽  
Author(s):  
Baojiang Sun ◽  
Min Li ◽  
Fangfang Zhang ◽  
Hui Wang ◽  
Jian Liu
2014 ◽  
Vol 721 ◽  
pp. 366-369
Author(s):  
Hong Gang Dang ◽  
Xiao Ya Yang ◽  
Wan Sheng He

In this paper, a nonlinear system with random parameter, which is called stochastic fractional-order complex Lorenz system, is investigated. The Laguerre polynomial approximation method is used to study the system. Then, the stochastic fractional-order system is reduced into the equivalent deterministic one with Laguerre approximation. The ensemble mean and sample responses of the stochastic system can be obtained.


2017 ◽  
Vol 132 (11) ◽  
Author(s):  
Gamal M. Mahmoud ◽  
Ayman A. Arafa ◽  
Emad E. Mahmoud
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cuimei Jiang ◽  
Shutang Liu ◽  
Chao Luo

We propose a new fractional-order chaotic complex system and study its dynamical properties including symmetry, equilibria and their stability, and chaotic attractors. Chaotic behavior is verified with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme.


2012 ◽  
Vol 19 (3) ◽  
pp. 733-738 ◽  
Author(s):  
M. Moghtadaei ◽  
M.R. Hashemi Golpayegani

Sign in / Sign up

Export Citation Format

Share Document