Analysis of a Nonlinear System with a Random Parameter

2014 ◽  
Vol 721 ◽  
pp. 366-369
Author(s):  
Hong Gang Dang ◽  
Xiao Ya Yang ◽  
Wan Sheng He

In this paper, a nonlinear system with random parameter, which is called stochastic fractional-order complex Lorenz system, is investigated. The Laguerre polynomial approximation method is used to study the system. Then, the stochastic fractional-order system is reduced into the equivalent deterministic one with Laguerre approximation. The ensemble mean and sample responses of the stochastic system can be obtained.

Author(s):  
Xiaojun Liu ◽  
Ling Hong

In this paper, the adaptive synchronization of a fractional-order complex T system with a random parameter is analyzed. Firstly, the Laguerre polynomial approximation method is applied to investigate the fractional-order system with a random parameter which obeys an exponential distribution. Based on this method, the stochastic system is reduced into the equivalent deterministic one. The improved Adams-Bashforth-Moulton algorithm with the predictor-correctors scheme is used to solve the approximately deterministic system numerically. Based on the stability theory of fractional-order systems, the synchronization for the deterministic system with unknown parameters is realized by designing appropriate synchronization controllers and estimation law for uncertain parameters. Numerical simulations are used to demonstrate the effectiveness and feasibility of the proposed scheme.


2014 ◽  
Vol 1014 ◽  
pp. 355-358
Author(s):  
Jin Gui Liu

This paper deals with robust synchronization of a class of uncertain fractional-order complex networks. Robust stability criteria of uncertain fractional-order system with is investigated based on LMI technique. Furthermore, robust synchronization of uncertain fractional-order complex networks is discussed based on the LMI technique. Finally, numerical example is given to illustrate the effectiveness of the proposed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang

The Hopf bifurcation of a fractional-order Van der Pol (VDP for short) system with a random parameter is investigated. Firstly, the Chebyshev polynomial approximation is applied to study the stochastic fractional-order system. Based on the method, the stochastic system is reduced to the equivalent deterministic one, and then the responses of the stochastic system can be obtained by numerical methods. Then, according to the existence conditions of Hopf bifurcation, the critical parameter value of the bifurcation is obtained by theoretical analysis. Then, numerical simulations are carried out to verify the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cuimei Jiang ◽  
Shutang Liu ◽  
Chao Luo

We propose a new fractional-order chaotic complex system and study its dynamical properties including symmetry, equilibria and their stability, and chaotic attractors. Chaotic behavior is verified with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Youming Lei ◽  
Yanyan Wang

Fractional-order calculus is more competent than integer-order one when modeling systems with properties of nonlocality and memory effect. And many real world problems related to uncertainties can be modeled with stochastic fractional-order systems with random parameters. Therefore, it is necessary to analyze the dynamical behaviors in those systems concerning both memory and uncertainties. The period-doubling bifurcation of stochastic fractional-order Duffing (SFOD for short) system with a bounded random parameter subject to harmonic excitation is studied in this paper. Firstly, Chebyshev polynomial approximation in conjunction with the predictor-corrector approach is used to numerically solve the SFOD system that can be reduced to the equivalent deterministic system. Then, the global and local analysis of period-doubling bifurcation are presented, respectively. It is shown that both the fractional-order and the intensity of the random parameter can be taken as bifurcation parameters, which are peculiar to the stochastic fractional-order system, comparing with the stochastic integer-order system or the deterministic fractional-order system. Moreover, the Chebyshev polynomial approximation is proved to be an effective approach for studying the period-doubling bifurcation of the SFOD system.


Sign in / Sign up

Export Citation Format

Share Document