modified projective synchronization
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
S. Saha Ray

This paper deals with the modified projective synchronization between two fractional-order four-dimensional (4D) hyperchaotic systems. Based on the Lyapunov stability theory, a new controller for the synchronization of two fractional-order hyperchaotic systems is developed. The stability analysis of the error dynamics system is performed by the fractional-order Lyapunov direct method alongwith Routh–Hurwitz stability criterion. Numerical simulations are presented to demonstrate the validity and verify the effectiveness of the proposed synchronization scheme.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 481 ◽  
Author(s):  
Zhonghui Li ◽  
Tongshui Xia ◽  
Cuimei Jiang

By designing a state observer, a new type of synchronization named complex modified projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic systems. Combining stability results of the fractional-order systems and the pole placement method, this paper proves the stability of fractional-order error systems and realizes complex modified projective synchronization. This method is so effective that it can be applied in engineering. Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems, including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to show the correctness of this new synchronization strategy.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 407
Author(s):  
Zhang ◽  
Feng ◽  
Yang

This paper investigates the problem of complex modified projective synchronization (CMPS) of fractional-order complex-variable chaotic systems (FOCCS) with unknown complex parameters. By a complex-variable inequality and a stability theory for fractional-order nonlinear systems, a new scheme is presented for constructing CMPS of FOCCS with unknown complex parameters. The proposed scheme not only provides a new method to analyze fractional-order complex-valued systems but also significantly reduces the complexity of computation and analysis. Theoretical proof and simulation results substantiate the effectiveness of the presented synchronization scheme.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jinman He ◽  
Fangqi Chen ◽  
Qinsheng Bi

This paper is concerned with the quasi-matrix and quasi-inverse-matrix projective synchronization between two nonidentical delayed fractional order neural networks subjected to external disturbances. First, the definitions of quasi-matrix and quasi-inverse-matrix projective synchronization are given, respectively. Then, in order to realize two types of synchronization for delayed and disturbed fractional order neural networks, two sufficient conditions are established and proved by constructing appropriate Lyapunov function in combination with some fractional order differential inequalities. And their estimated synchronization error bound is obtained, which can be reduced to the required standard as small as what we need by selecting appropriate control parameters. Because of the generality of the proposed synchronization, choosing different projective matrix and controllers, the two synchronization types can be reduced to some common synchronization types for delayed fractional order neural networks, like quasi-complete synchronization, quasi-antisynchronization, quasi-projective synchronization, quasi-inverse projective synchronization, quasi-modified projective synchronization, quasi-inverse-modified projective synchronization, and so on. Finally, as applications, two numerical examples with simulations are employed to illustrate the efficiency and feasibility of the new synchronization analysis.


2018 ◽  
Vol 116 ◽  
pp. 302-315 ◽  
Author(s):  
Xiaoli Qin ◽  
Cong Wang ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Yixian Yang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Xinlian Zhou ◽  
Yuhua Xu

This paper investigates hybrid synchronization of the uncertain generalized Lorenz system. Several useful criteria are given for synchronization of two generalized Lorenz systems, and the adaptive control law and the parameter update law are used. In comparison with those of existing synchronization methods, hybrid synchronization includes full-order synchronization, reduced-order synchronization, and modified projective synchronization. What is more, control of the stability point, complete synchronization, and antisynchronization can coexist in the same system. Numerical simulations show the effectiveness of this method in a class of chaotic systems.


Sign in / Sign up

Export Citation Format

Share Document