A solution to the path planning problem via algebraic geometry and reinforcement learning

Author(s):  
Francesco Gismondi ◽  
Corrado Possieri ◽  
Antonio Tornambe
2015 ◽  
Vol 27 (1) ◽  
pp. 57-63
Author(s):  
Kentarou Kurashige ◽  
◽  
Kaoru Nikaido

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270001/07.jpg"" width=""300"" />Moderate-based reward generator</div> In conventional reinforcement learning, a reward function influences the learning results, and therefore, the reward function is very important. To design this function considering a task, knowledge of reinforcement learning is required. In addition to this, a reward function must be designed for each task. These requirements make the design of a reward function unfeasible. We focus on this problem and aim at realizing a method to generate a reward without the design of a special reward function. In this paper, we propose a universal evaluation for sensor inputs, which is independent of a task and is modeled on the basis of the indicator of pleasure and pain in biological organisms. This evaluation estimates the trend of sensor inputs based on the ease of input prediction. Instead of the design of a reward function, our approach assists a human being in learning how to interact with an agent and teaching it his/her demand. We recruited a research participant and attempted to solve the path planning problem. The results show that a participant can teach an agent his/her demand by interacting with the agent and the agent can generate an adaptive route by interacting with the participant and the environment. </span>


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Manufacturing ◽  
2002 ◽  
Author(s):  
Mahadevan Balasubramaniam ◽  
Taejung Kim ◽  
Sanjay Sarma

In previous work, we and others have developed visibility-based tool path generation schemes. Almost all previous research implicitly assumes that all visible parts are machinable. Though usually true practice, this assumption hides several subtleties inherent to the geometry of the machining process. Here, we define machinability in a stricter sense, as a generalization of the robotic path planning problem. Then, we define various “tight” necessary conditions for strict machinability, and show the connections between these conditions. After demonstrating the richness of the information contained in visibility, we show how to compute visibility effectively. Visible directions constitute an approximate feasible configuration space of a cutting tool. We also address questions pertaining to the topological connectivity of the feasible space. The theoretical results of this paper lay down a firmer foundation of machining path planning.


Sign in / Sign up

Export Citation Format

Share Document