Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach

2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón
2018 ◽  
Vol 8 (9) ◽  
pp. 1425 ◽  
Author(s):  
Yang Xue ◽  
Jian-Qiao Sun

Path planning problems involve finding a feasible path from the starting point to the target point. In mobile robotics, path planning (PP) is one of the most researched subjects at present. Since the path planning problem is an NP-hard problem, it can be solved by multi-objective evolutionary algorithms (MOEAs). In this article, we propose a multi-objective method for solving the path planning problem. It is a population evolutionary algorithm and solves three different objectives (path length, safety, and smoothness) to acquire precise and effective solutions. In addition, five scenarios and another existing method are used to test the proposed algorithm. The results show the advantages of the algorithm. In particular, different quality metrics are used to assess the obtained results. In the end, the research indicates that the proposed multi-objective evolutionary algorithm is a good choice for solving the path planning problem.


2014 ◽  
Vol 1079-1080 ◽  
pp. 711-715 ◽  
Author(s):  
Qiang Wang ◽  
Guan Cheng Wang ◽  
Fan Fei ◽  
Shuai Lü

Multi-objective path planning is a path planning problem when there are more than one objective function to be optimized at the same time. This paper is based on traditional A* algorithm.To improve the algorithm A* and find out the shortest path in the different environments,we choose different weights and do global path planning by using improved evaluation function.We use the minimum binary heap in a linked list structure to manage the OPEN table,and the search efficiency has been improved.We compile the simulation program of path planning in the VC environment,then compare the operation time and generated paths by transforming the coordinates of the initial node and the goal node.Research shows that, the algorithm can improve the efficiency of the path planning efficiently.


2018 ◽  
Vol 8 (11) ◽  
pp. 2253 ◽  
Author(s):  
Yang Xue

In many areas, such as mobile robots, video games and driverless vehicles, path planning has always attracted researchers’ attention. In the field of mobile robotics, the path planning problem is to plan one or more viable paths to the target location from the starting position within a given obstacle space. Evolutionary algorithms can effectively solve this problem. The non-dominated sorting genetic algorithm (NSGA-II) is currently recognized as one of the evolutionary algorithms with robust optimization capabilities and has solved various optimization problems. In this paper, NSGA-II is adopted to solve multi-objective path planning problems. Three objectives are introduced. Besides the usual selection, crossover and mutation operators, some practical operators are applied. Moreover, the parameters involved in the algorithm are studied. Additionally, another evolutionary algorithm and quality metrics are employed for examination. Comparison results demonstrate that non-dominated solutions obtained by the algorithm have good characteristics. Subsequently, the path corresponding to the knee point of non-dominated solutions is shown. The path is shorter, safer and smoother. This path can be adopted in the later decision-making process. Finally, the above research shows that the revised algorithm can effectively solve the multi-objective path planning problem in static environments.


Author(s):  
Mahmoud Golabi ◽  
Soheila Ghambari ◽  
Julien Lepagnot ◽  
Laetitia Jourdan ◽  
Mathieu Brevilliers ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 255
Author(s):  
Shuang Xia ◽  
Xiangyin Zhang

This paper considered the constrained unmanned aerial vehicle (UAV) path planning problem as the multi-objective optimization problem, in which both costs and constraints are treated as the objective functions. A novel multi-objective particle swarm optimization algorithm based on the Gaussian distribution and the Q-Learning technique (GMOPSO-QL) is proposed and applied to determine the feasible and optimal path for UAV. In GMOPSO-QL, the Gaussian distribution based updating operator is adopted to generate new particles, and the exploration and exploitation modes are introduced to enhance population diversity and convergence speed, respectively. Moreover, the Q-Learning based mode selection logic is introduced to balance the global search with the local search in the evolution process. Simulation results indicate that our proposed GMOPSO-QL can deal with the constrained UAV path planning problem and is superior to existing optimization algorithms in terms of efficiency and robustness.


Sign in / Sign up

Export Citation Format

Share Document