Foraging ecology of Bowfin (Amia calva), in the Lake Huron–Erie Corridor of the Laurentian Great Lakes: Individual specialists in generalist populations

2016 ◽  
Vol 42 (6) ◽  
pp. 1452-1460 ◽  
Author(s):  
Brent Nawrocki ◽  
Scott F. Colborne ◽  
David J. Yurkowski ◽  
Aaron T. Fisk
Author(s):  
Benjamin Rook ◽  
Michael J. Hansen ◽  
Charles R. Bronte

Historically, Cisco Coregonus artedi and deepwater ciscoes Coregonus spp. were the most abundant and ecologically important fish species in the Laurentian Great Lakes, but anthropogenic influences caused nearly all populations to collapse by the 1970s. Fishery managers have begun exploring the feasibility of restoring populations throughout the basin, but questions regarding hatchery propagation and stocking remain. We used historical and contemporary stock-recruit parameters previously estimated for Ciscoes in Wisconsin waters of Lake Superior, with estimates of age-1 Cisco rearing habitat (broadly defined as total ha ≤ 80 m depth) and natural mortality, to estimate how many fry (5.5 months post-hatch), fall fingerling (7.5 months post-hatch), and age-1 (at least 12 months post-hatch) hatchery-reared Ciscoes are needed for stocking in the Great Lakes to mimic recruitment rates in Lake Superior, a lake that has undergone some recovery. Estimated stocking densities suggested that basin-wide stocking would require at least 0.641-billion fry, 0.469-billion fall fingerlings, or 0.343-billion age-1 fish for a simultaneous restoration effort targeting historically important Cisco spawning and rearing areas in Lakes Huron, Michigan, Erie, Ontario, and Saint Clair. Numbers required for basin-wide stocking were considerably greater than current or planned coregonine production capacity, thus simultaneous stocking in the Great Lakes is likely not feasible. Provided current habitat conditions do not preclude Cisco restoration, managers could maximize the effectiveness of available production capacity by concentrating stocking efforts in historically important spawning and rearing areas, similar to the current stocking effort in Saginaw Bay, Lake Huron. Other historically important Cisco spawning and rearing areas within each lake (listed in no particular order) include: (1) Thunder Bay in Lake Huron, (2) Green Bay in Lake Michigan, (3) the islands near Sandusky, Ohio, in western Lake Erie, and (4) the area near Hamilton, Ontario, and Bay of Quinte in Lake Ontario. Our study focused entirely on Ciscoes but may provide a framework for describing future stocking needs for deepwater ciscoes.


1991 ◽  
Vol 69 (6) ◽  
pp. 1237-1240 ◽  
Author(s):  
Bruce A. Manny ◽  
Thomas A. Edsall ◽  
Daniel E. Wujek

We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora. Key words: benthic, Compsopogon, freshwater red algae, Great Lakes, Lake Huron.


Author(s):  
John Lekki ◽  
R. Anderson ◽  
Q.-V. Nguyen ◽  
J. Demers ◽  
J. Flatico ◽  
...  

2017 ◽  
Author(s):  
John W. Johnston ◽  
◽  
Erin P. Argyilan ◽  
Steve J. Baedke ◽  
Sean Morrison ◽  
...  

Author(s):  
Edward S. Rutherford ◽  
Hongyan Zhang ◽  
Yu‐Chun Kao ◽  
Doran M. Mason ◽  
Ali Shakoor ◽  
...  

Author(s):  
Euan D. Reavie ◽  
Meijun Cai ◽  
Carsten Meyer-Jacob ◽  
John P. Smol ◽  
Josef P. Werne

Sign in / Sign up

Export Citation Format

Share Document