scholarly journals 382 COL7A1 mutation detection in a cohort of 133 consanguineous families with recessive dystrophic epidermolysis bullosa: Comparison of disease-targeted next generation sequencing panel vs. traditional Sanger sequencing

2016 ◽  
Vol 136 (5) ◽  
pp. S68
Author(s):  
L. Youssefian ◽  
H. Vahidnezhad ◽  
S. Zeinali ◽  
M.R. Barzegar ◽  
S. Sotoudeh ◽  
...  





Endocrine ◽  
2020 ◽  
Vol 69 (2) ◽  
pp. 451-455 ◽  
Author(s):  
Antonella Verrienti ◽  
Valeria Pecce ◽  
Luana Abballe ◽  
Valeria Ramundo ◽  
Rosa Falcone ◽  
...  


2017 ◽  
Vol 27 (6) ◽  
pp. 791-796 ◽  
Author(s):  
Jianping Xiao ◽  
Xueqin Guo ◽  
Yong Wang ◽  
Mingkun Shao ◽  
Xiaoming Wei ◽  
...  

Purpose To identify disease-causing mutations in a Chinese patient with retinitis pigmentosa (RP). Methods A detailed clinical examination was performed on the proband. Targeted next-generation sequencing (NGS) combined with bioinformatics analysis was performed on the proband to detect candidate disease-causing mutations. Sanger sequencing was performed on all subjects to confirm the candidate mutations and assess cosegregation within the family. Results Clinical examinations of the proband showed typical characteristics of RP. Three candidate heterozygous mutations in 3 genes associated with RP were detected in the proband by targeted NGS. The 3 mutations were confirmed by Sanger sequencing and the deletion (c.357_358delAA) in PRPF31 was shown to cosegregate with RP phenotype in 7 affected family members, but not in 3 unaffected family members. Conclusions The deletion (c.357_358delAA) in PRPF31 was the disease-causing mutation for the proband and his affected family members with RP. To our knowledge, this is the second report of the deletion and the first report of the other 2 mutations in the Chinese population. Targeted NGS combined with bioinformatics analysis proved to be an effective molecular diagnostic tool for RP.



BMJ Open ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. e021632 ◽  
Author(s):  
Juliette Bacquet ◽  
Tanya Stojkovic ◽  
Amandine Boyer ◽  
Nathalie Martini ◽  
Frédérique Audic ◽  
...  

PurposeInherited peripheral neuropathies (IPN) represent a large heterogenous group of hereditary diseases with more than 100 causative genes reported to date. In this context, targeted next-generation sequencing (NGS) offers the opportunity to screen all these genes with high efficiency in order to unravel the genetic basis of the disease. Here, we compare the diagnostic yield of targeted NGS with our previous gene by gene Sanger sequencing strategy. We also describe several novel likely pathogenic variants.Design and participantsWe have completed the targeted NGS of 81 IPN genes in a cohort of 123 unrelated patients affected with diverse forms of IPNs, mostly Charcot-Marie-Tooth disease (CMT): 23% CMT1, 52% CMT2, 9% distal hereditary motor neuropathy, 7% hereditary sensory and autonomic neuropathy and 6.5% intermediate CMT.ResultsWe have solved the molecular diagnosis in 49 of 123 patients (~40%). Among the identified variants, 26 variants were already reported in the literature. In our cohort, the most frequently mutated genes are respectively:MFN2,SH3TC2,GDAP1,NEFL,GAN,KIF5AandAARS. Panel-based NGS was more efficient in familial cases than in sporadic cases (diagnostic yield 49%vs19%, respectively). NGS-based search for copy number variations, allowed the identification of three duplications in three patients and raised the diagnostic yield to 41%. This yield is two times higher than the one obtained previously by gene Sanger sequencing screening. The impact of panel-based NGS screening is particularly important for demyelinating CMT (CMT1) subtypes, for which the success rate reached 87% (36% only for axonal CMT2).ConclusionNGS allowed to identify causal mutations in a shorter and cost-effective time. Actually, targeted NGS is a well-suited strategy for efficient molecular diagnosis of IPNs. However, NGS leads to the identification of numerous variants of unknown significance, which interpretation requires interdisciplinary collaborations between molecular geneticists, clinicians and (neuro)pathologists.



2013 ◽  
Vol 34 (7) ◽  
pp. 1035-1042 ◽  
Author(s):  
Birgit Sikkema-Raddatz ◽  
Lennart F. Johansson ◽  
Eddy N. de Boer ◽  
Rowida Almomani ◽  
Ludolf G. Boven ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document