scholarly journals A new approach to modeling early warning systems for currency crises: Can a machine-learning fuzzy expert system predict the currency crises effectively?

2008 ◽  
Vol 27 (7) ◽  
pp. 1098-1121 ◽  
Author(s):  
Chin-Shien Lin ◽  
Haider A. Khan ◽  
Ruei-Yuan Chang ◽  
Ying-Chieh Wang
Fuzzy Systems ◽  
2017 ◽  
pp. 202-234
Author(s):  
Goran Klepac ◽  
Robert Kopal ◽  
Leo Mrsic

Early warning systems are made with purpose to efficiently recognize deviant and potentially dangerous trends related to company business as early as possible and with significant relevance. There are numerous ways to set up early warning systems within company. Those solutions are often based on single data mining methods, and they rarely provide the holistic and qualitative approach needed in modern market uncertainty conditions. This chapter gives a novel concept for early warning system design within company, applicable in different industries. The core of the proposed framework is hybrid fuzzy expert system, which can contain a variety of data mining predictive models responsible for some specific areas in addition to traditional rule blocks. It can also include social network analysis metrics based on linguistic variables and incorporated within rule blocks. As part of this framework, SNA methods are also explained and introduced as a very powerful and unique tool to be used in modern early warning systems.


Author(s):  
Goran Klepac ◽  
Robert Kopal ◽  
Leo Mrsic

Early warning systems are made with purpose to efficiently recognize deviant and potentially dangerous trends related to company business as early as possible and with significant relevance. There are numerous ways to set up early warning systems within company. Those solutions are often based on single data mining methods, and they rarely provide the holistic and qualitative approach needed in modern market uncertainty conditions. This chapter gives a novel concept for early warning system design within company, applicable in different industries. The core of the proposed framework is hybrid fuzzy expert system, which can contain a variety of data mining predictive models responsible for some specific areas in addition to traditional rule blocks. It can also include social network analysis metrics based on linguistic variables and incorporated within rule blocks. As part of this framework, SNA methods are also explained and introduced as a very powerful and unique tool to be used in modern early warning systems.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 183
Author(s):  
Paul Muñoz ◽  
Johanna Orellana-Alvear ◽  
Jörg Bendix ◽  
Jan Feyen ◽  
Rolando Célleri

Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods.


Landslides ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 2231-2246
Author(s):  
Hemalatha Thirugnanam ◽  
Maneesha Vinodini Ramesh ◽  
Venkat P. Rangan

Author(s):  
Paul Muñoz ◽  
Johanna Orellana-Alvear ◽  
Jörg Bendix ◽  
Jan Feyen ◽  
Rolando Célleri

Flood Early Warning Systems (FEWSs) using Machine Learning (ML) has gained worldwide popularity. However, determining the most efficient ML technique is still a bottleneck. We assessed FEWSs with three river states, No-alert, Pre-alert, and Alert for flooding, for lead times between 1 to 12 hours using the most common ML techniques, such as Multi-Layer Perceptron (MLP), Logistic Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1- and 12-hour cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of the society for floods.


Sign in / Sign up

Export Citation Format

Share Document