landslide early warning
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 80)

H-INDEX

18
(FIVE YEARS 6)

2021 ◽  
Vol 21 (12) ◽  
pp. 3863-3871
Author(s):  
Jim S. Whiteley ◽  
Arnaud Watlet ◽  
J. Michael Kendall ◽  
Jonathan E. Chambers

Abstract. We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how the design and monitoring components of LoLEWS benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever-increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS.


2021 ◽  
Author(s):  
Soichi Kaihara ◽  
Noriko Tadakuma ◽  
Hitoshi Saito ◽  
Hiroaki Nakaya

Abstract Critical rainfall events are used in landslide early-warning systems to predict the occurrence and severity of disasters. In this study, past landslide disasters in Japan were identified for which the critical rainfall set for each 1-km grid was exceeded using historical landslide records, radar-based rainfall data over a 1-km grid, and standard rainfall data collected over the past 17 years. It was determined that nearly equal numbers of rainfall events were identified with higher and lower rainfall amounts than the critical rainfall. The probability that a series of rainfall events would cause a landslide was approximately 1.15% when the critical rainfall was exceeded and 0.09% otherwise, a difference of approximately 10 times. It was also found that even if critical rainfall was not exceeded, in the case of debris flow and slope failures, there was rainfall that exceeded the standard rainfall one or two days before. In the case of landslides, there was rainfall that exceeded the critical rainfall one or two weeks before, and if the critical rainfall was exceeded in another rainfall event, a landslide could occur. The operational evaluation of Japanese LEWSs has a recall value of 0.486 as the accuracy of occurrence prediction, which was related to the fact that almost half of the rainfall events occurred in nonexceedance of the reference rainfall. The specificity was 0.935, known as the accuracy of nonoccurrence prediction, which was also greatly influenced by the TN (true negative) data of nonexceeding rainfall events, which accounted for most of the data.


2021 ◽  
Author(s):  
Ivo Fustos ◽  
Nataly Manque ◽  
Daniel Vásquez ◽  
Mauricio Hermosilla ◽  
Viviana Letelier

Abstract. Rainfall-Induced Landslide Early Warning Systems (RILEWS) are critical tools for reducing and mitigating economic and social damages related to landslides. Despite this critical need, the Southern Andes does not yet possess an operational-scale system to support decision-makers. We propose RILEWS using a logistic regression system in the Southern Andes. The models were forced by corrected simulations of precipitation and geomorphological features. We evaluated the precipitation using the Weather and Research Forecast (WRF) model on an hourly scale. The precipitation was corrected using bias correction approaches with daily data from 12 meteorological stations. Four logistic and probabilistic models were then calibrated using Logit and Probit distributions. The predictor variables used were combinations of the slope, corrected daily precipitation and data preceding the events (7 and 30 days previous) for 57 Rainfall-Induced Landslides (RIL); validation was by ROC analysis. Our results showed that WRF does not represent the spatial variability of the precipitation. This situation was resolved by bias correcting. Specifically, the PP_M4a method with Bernoulli distribution for the occurrence and Gamma for the intensity produced lower MAE and RMSE values and higher correlation values. Finally, our RILEWS had a high predicting capacity with an AUC of 0.80 using daily precipitation data and slope. We conclude that our methodology is suitable at an operational level in the Southern Andes. Our contribution could become a useful tool in the mitigation of impacts related to climate change.


Author(s):  
Tamara Breuninger ◽  
Bettina Menschik ◽  
Agnes Demharter ◽  
Moritz Gamperl ◽  
Kurosch Thuro

The current study site of the project Inform@Risk is located at a landslide prone area at the eastern slopes of the city of Medellín, Colombia, which are composed of the deeply weathered Medellín Dunite, an ultramafic Triassic rock. The dunite rock mass can be characterized by small-scale changes, which influence the landslide exposition to a major extent. Due to the main aim of the project, to establish a low-cost landslide early warning system (EWS) in this area, detailed field studies, drillings, laboratory and mineralogical tests were conducted. The results suggest that the dunite rock mass shows a high degree of serpentinization and is heavily weathered up to 50 m depth. The rock is permeated by pseudokarst, which was already found in other regions of this unit. Within the actual project, a hypothesis has for the first time been established, explaining the generation of the pseudokarst features caused by weathering and dissolution processes. These parameters result in a highly inhomogeneous rock mass and nearly no direct correlation of weathering with depth. In addition, the theory of a secondary, weathering serpentinization was established, explaining the solution weathering creating the pseudokarst structures. This contribution aims to emphasize the role of detailed geological data evaluation in the context of hazard analysis as an indispensable data basis for landslide early warning systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wu-Nan Tsai ◽  
Chien-Chih Chen ◽  
Chih-Wen Chiang ◽  
Pei-Yuan Chen ◽  
Chih-Yu Kuo ◽  
...  

Water saturation in the bedrock or colluvium is highly related to most landslide hazards, and rainfall is likely a crucial factor. The dynamic processes of onsite rock/soil mechanics could be revealed via monitoring using the electrical resistivity tomography (ERT) technique and Archie’s law. This study aims to investigate water saturation changes over time using time-lapse ERT images, providing a powerful method for monitoring landslide events. A fully automatic remote resistivity monitoring system was deployed to acquire hourly electrical resistivity data using a nontraditional hybrid array in the Lantai area of Yilan Taiping Mountain in Northeast Taiwan from 2019 to 2021. Six subzones in borehole ERT images were examined for the temporal and spatial resistivity variations, as well as possible pathways of the groundwater. Two representative cases of inverted electrical resistivity images varying with precipitation may be correlated with water saturation changes in the studied hillslope, implying the process of rainfall infiltration. Layers with decreased and increased electrical resistivity are also observed before sliding events. Accordingly, we suggest that high-frequency time-lapse ERT monitoring could play a crucial role in landslide early warning.


2021 ◽  
Vol 13 (19) ◽  
pp. 4006
Author(s):  
Chiao-Yin Lu ◽  
Yu-Chang Chan ◽  
Jyr-Ching Hu ◽  
Chia-Han Tseng ◽  
Che-Hsin Liu ◽  
...  

A slow-moving landslide on the Huafan University campus, which is located on a dip slope in northern Taiwan, has been observed since 1990. However, reliable monitoring data are difficult to acquire after 2018 due to the lack of continuous maintenance of the field measurement equipment. In this study, the multitemporal interferometry (MTI) technique is applied with Sentinel-1 SAR images to monitor the slow-moving landslide from 2014–2019. The slow-moving areas detected by persistent scatterer (PS) pixels are consistent with the range of previous studies, which are based on in situ monitoring data and field surveys. According to the time series of the PS pixels, a long period gravity-induced deformation of the slow-moving landslide can be clearly observed. Moreover, a short period seasonal surface fluctuation of the slow-moving landslide, which has seldom been discussed before, can also be detected in this study. The seasonal surface fluctuation is in-phase with precipitation, which is inferred to be related to the geological and hydrological conditions of the study area. The MTI technique can compensate for the lack of surface displacement data, in this case, the Huafan University campus, and provide information for evaluating and monitoring slow-moving landslides for possible landslide early warning in the future.


2021 ◽  
Vol 21 (9) ◽  
pp. 2753-2772
Author(s):  
Doris Hermle ◽  
Markus Keuschnig ◽  
Ingo Hartmeyer ◽  
Robert Delleske ◽  
Michael Krautblatter

Abstract. While optical remote sensing has demonstrated its capabilities for landslide detection and monitoring, spatial and temporal demands for landslide early warning systems (LEWSs) had not been met until recently. We introduce a novel conceptual approach to structure and quantitatively assess lead time for LEWSs. We analysed “time to warning” as a sequence: (i) time to collect, (ii) time to process and (iii) time to evaluate relevant optical data. The difference between the time to warning and “forecasting window” (i.e. time from hazard becoming predictable until event) is the lead time for reactive measures. We tested digital image correlation (DIC) of best-suited spatiotemporal techniques, i.e. 3 m resolution PlanetScope daily imagery and 0.16 m resolution unmanned aerial system (UAS)-derived orthophotos to reveal fast ground displacement and acceleration of a deep-seated, complex alpine mass movement leading to massive debris flow events. The time to warning for the UAS/PlanetScope totals 31/21 h and is comprised of time to (i) collect – 12/14 h, (ii) process – 17/5 h and (iii) evaluate – 2/2 h, which is well below the forecasting window for recent benchmarks and facilitates a lead time for reactive measures. We show optical remote sensing data can support LEWSs with a sufficiently fast processing time, demonstrating the feasibility of optical sensors for LEWSs.


Sign in / Sign up

Export Citation Format

Share Document