scholarly journals The Hyers–Ulam stability constants of first order linear differential operators

2004 ◽  
Vol 296 (2) ◽  
pp. 403-409 ◽  
Author(s):  
Sin-Ei Takahasi ◽  
Hiroyuki Takagi ◽  
Takeshi Miura ◽  
Shizuo Miyajima
2004 ◽  
Vol 2004 (22) ◽  
pp. 1151-1158 ◽  
Author(s):  
Takeshi Miura ◽  
Go Hirasawa ◽  
Sin-Ei Takahasi

Lethbe an entire function andTha differential operator defined byThf=f′+hf. We show thatThhas the Hyers-Ulam stability if and only ifhis a nonzero constant. We also consider Ger-type stability problem for|1−f′/hf|≤ϵ.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramdoss Murali ◽  
Arumugam Ponmana Selvan ◽  
Sanmugam Baskaran ◽  
Choonkil Park ◽  
Jung Rye Lee

AbstractThe main aim of this paper is to investigate various types of Ulam stability and Mittag-Leffler stability of linear differential equations of first order with constant coefficients using the Aboodh transform method. We also obtain the Hyers–Ulam stability constants of these differential equations using the Aboodh transform and some examples to illustrate our main results are given.


1975 ◽  
Vol 27 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Roger T. Lewis

Define the self-adjoint operatorwhere r(x) > 0 on (0, ∞) and q and p are real-valued. The coefficient q is assumed to be differentiate on (0, ∞) and r is assumed to be twice differentia t e on (0, ∞).The oscillatory behavior of L4 as well as the general even order operator has been considered by Leigh ton and Nehari [5], Glazman [2], Reid [7], Hinton [3], Barrett [1], Hunt and Namb∞diri [4], Schneider [8], and Lewis [6].


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Soon-Mo Jung

We prove the generalized Hyers-Ulam stability of the first-order linear homogeneous matrix differential equationsy→'(t)=A(t)y→(t). Moreover, we apply this result to prove the generalized Hyers-Ulam stability of thenth order linear differential equations with variable coefficients.


Sign in / Sign up

Export Citation Format

Share Document