scholarly journals Vector-valued Ruelle operator with weakly contractive IFS

2007 ◽  
Vol 330 (1) ◽  
pp. 221-236
Author(s):  
Yuan-Ling Ye
2012 ◽  
Vol 33 (4) ◽  
pp. 1265-1290 ◽  
Author(s):  
YUAN-LING YE

AbstractThe Ruelle operator has been studied extensively both in dynamical systems and iterated function systems (IFSs). Given a weakly contractive IFS $(X, \{w_j\}_{j=1}^m)$ and an associated family of positive continuous potential functions $\{p_j\}_{j=1}^m$, a triple system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$is set up. In this paper we study Ruelle operators associated with the triple systems. The paper presents an easily verified condition. Under this condition, the Ruelle operator theorem holds provided that the potential functions are Dini continuous. Under the same condition, the Ruelle operator is quasi-compact, and the iterations sequence of the Ruelle operator converges with a specific geometric rate, if the potential functions are Lipschitz continuous.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3237-3243
Author(s):  
In Hwang ◽  
In Kim ◽  
Sumin Kim

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space H2Cn and the left coprime factorization of its symbol. Given a subset F ? H2Cn, we also consider the smallest invariant subspace S*F of the backward shift S* that contains F.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3611-3626 ◽  
Author(s):  
Abdul Khan ◽  
Vivek Kumar ◽  
Satish Narwal ◽  
Renu Chugh

Many popular iterative algorithms have been used to approximate fixed point of contractive type operators. We define the concept of generalized ?-weakly contractive random operator T on a separable Banach space and establish Bochner integrability of random fixed point and almost sure stability of T with respect to several random Kirk type algorithms. Examples are included to support new results and show their validity. Our work generalizes, improves and provides stochastic version of several earlier results by a number of researchers.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


Sign in / Sign up

Export Citation Format

Share Document