continuous potential
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 26)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Victor Vargas

<p style='text-indent:20px;'>Consider <inline-formula><tex-math id="M2">\begin{document}$ \beta &gt; 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \lfloor \beta \rfloor $\end{document}</tex-math></inline-formula> its integer part. It is widely known that any real number <inline-formula><tex-math id="M4">\begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document}</tex-math></inline-formula> can be represented in base <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> using a development in series of the form <inline-formula><tex-math id="M6">\begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ x = (x_n)_{n \geq 1} $\end{document}</tex-math></inline-formula> is a sequence taking values into the alphabet <inline-formula><tex-math id="M8">\begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}</tex-math></inline-formula>. The so called <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift, denoted by <inline-formula><tex-math id="M10">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula>, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy <inline-formula><tex-math id="M11">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M12">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>. Fixing a Hölder continuous potential <inline-formula><tex-math id="M13">\begin{document}$ A $\end{document}</tex-math></inline-formula>, we show an explicit expression for the main eigenfunction of the Ruelle operator <inline-formula><tex-math id="M14">\begin{document}$ \psi_A $\end{document}</tex-math></inline-formula>, in order to obtain a natural extension to the bilateral <inline-formula><tex-math id="M15">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift of its corresponding Gibbs state <inline-formula><tex-math id="M16">\begin{document}$ \mu_A $\end{document}</tex-math></inline-formula>. Our main goal here is to prove a first level large deviations principle for the family <inline-formula><tex-math id="M17">\begin{document}$ (\mu_{tA})_{t&gt;1} $\end{document}</tex-math></inline-formula> with a rate function <inline-formula><tex-math id="M18">\begin{document}$ I $\end{document}</tex-math></inline-formula> attaining its maximum value on the union of the supports of all the maximizing measures of <inline-formula><tex-math id="M19">\begin{document}$ A $\end{document}</tex-math></inline-formula>. The above is proved through a technique using the representation of <inline-formula><tex-math id="M20">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula> and its bilateral extension <inline-formula><tex-math id="M21">\begin{document}$ \widehat{\Sigma_\beta} $\end{document}</tex-math></inline-formula> in terms of the quasi-greedy <inline-formula><tex-math id="M22">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M23">\begin{document}$ 1 $\end{document}</tex-math></inline-formula> and the so called involution kernel associated to the potential <inline-formula><tex-math id="M24">\begin{document}$ A $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 29 (3) ◽  
pp. 33-66
Author(s):  
Sami Baraket ◽  
Rached Jaidane

Abstract We consider the existence of solutions of the following weighted problem: { L : = - d i v ( ρ ( x ) | ∇ u | N - 2 ∇ u ) + ξ ( x ) | u | N - 2 u = f ( x , u ) i n B u > 0 i n B u = 0 o n ∂ B , \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝ N , N #62; 2, ρ ( x ) = ( log e | x | ) N - 1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pengcheng Zhang ◽  
Sifan Chen ◽  
Changjia Zhu ◽  
Linxiao Hou ◽  
Weipeng Xian ◽  
...  

AbstractThermal sensation, which is the conversion of a temperature stimulus into a biological response, is the basis of the fundamental physiological processes that occur ubiquitously in all organisms from bacteria to mammals. Significant efforts have been devoted to fabricating artificial membranes that can mimic the delicate functions of nature; however, the design of a bionic thermometer remains in its infancy. Herein, we report a nanofluidic membrane based on an ionic covalent organic framework (COF) that is capable of intelligently monitoring temperature variations and expressing it in the form of continuous potential differences. The high density of the charged sites present in the sub-nanochannels renders superior permselectivity to the resulting nanofluidic system, leading to a high thermosensation sensitivity of 1.27 mV K−1, thereby outperforming any known natural system. The potential applicability of the developed system is illustrated by its excellent tolerance toward a broad range of salt concentrations, wide working temperatures, synchronous response to temperature stimulation, and long-term ultrastability. Therefore, our study pioneers a way to explore COFs for mimicking the sophisticated signaling system observed in the nature.


2021 ◽  
Vol 28 ◽  
Author(s):  
Sathish Veerasamy ◽  
Manivannan Chandrakumar ◽  
Malathi Balasubramaniyan ◽  
Ramesh Kumar Arumugam ◽  
Thanasekaran Pounraj

: Coronaviruses (CoVs) are enveloped viruses with particle-like characteristics and a diameter of 60−140 nm, positively charged, and single-stranded RNA genomes which produce a major outbreak of human fatal pneumonia since the beginning of the 21st century. COVID-19 is currently considered as a continuous potential pandemic threat across the globe. Therefore, considerable efforts have been made to develop innovative methods and technologies for suppressing the spread of viruses as well as inactivating the viruses but COVID-19 vaccines are still in the development phase. This perspective focuses on the sensing, detection and therapeutic applications of CoVs using inorganic-based nanomaterials, metal complexes, and metal-conjugates. Synthetic inorganic-based nanoparticles interact strongly with proteins of viruses due to their morphological similarities, and therefore, numerous antivirals have been tested for efficacy against different viruses in vitro through colorimetric and electrochemical assays. Metal complexes-based agents such as bismuth complexes form attractive class of drugs with a number of therapeutic applications including the inhibition and duplex-unwinding activity of SARS-CoV helicase by quantitative real-time PCR (Q-RT-PCR), phosphate release assay and radioassay studies. Metal-conjugates show major effects on inhibiting the 3C-like protease of SARS-CoV and the replication of RNA-dependent RNA polymerase (RdRp). We anticipate that these approaches will provide rapid and accurate antiviral strategies in the development of these innovative sensors for the detection, inhibition and antiviral activities of coronaviruses.


Author(s):  
Svetlana Jitomirskaya ◽  
Saša Kocić

Abstract We initiate the study of Schrödinger operators with ergodic potentials defined over circle map dynamics, in particular over circle diffeomorphisms. For analytic circle diffeomorphisms and a set of rotation numbers satisfying Yoccoz’s ${{\mathcal{H}}}$ arithmetic condition, we discuss an extension of Avila’s global theory. We also give an abstract version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues for general potentials with repetitions. Coupled with the dynamical analysis, we obtain that, for every $C^{1+BV}$ circle diffeomorphism, with a super Liouville rotation number and an invariant measure $\mu $, and for $\mu $-almost all $x\in{{\mathbb{T}}}^1$, the corresponding Schrödinger operator has purely continuous spectrum for every Hölder continuous potential $V$.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Edcarlos D. Silva ◽  
Marcos L. M. Carvalho ◽  
Claudiney Goulart

<p style='text-indent:20px;'>It is established existence of solutions for subcritical and critical nonlinearities considering a fourth-order elliptic problem defined in the whole space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The work is devoted to study a class of potentials and nonlinearities which can be periodic or asymptotically periodic. Here we consider a general fourth-order elliptic problem where the principal part is given by <inline-formula><tex-math id="M2">\begin{document}$ \alpha \Delta^2 u + \beta \Delta u + V(x)u $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M3">\begin{document}$ \alpha &gt; 0, \beta \in \mathbb{R} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ V: \mathbb{R}^N \rightarrow \mathbb{R} $\end{document}</tex-math></inline-formula> is a continuous potential. Hence our main contribution is to consider general fourth-order elliptic problems taking into account the cases where <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> is negative, zero or positive. In order to do that we employ some fine estimates proving the compactness for the associated energy functional.</p>


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098573
Author(s):  
Wenjie Geng ◽  
Zhiqiang Cao ◽  
Zhonghui Li ◽  
Yingying Yu ◽  
Fengshui Jing ◽  
...  

Vision-based grasping plays an important role in the robot providing better services. It is still challenging under disturbed scenes, where the target object cannot be directly grasped constrained by the interferences from other objects. In this article, a robotic grasping approach with firstly moving the interference objects is proposed based on elliptical cone-based potential fields. Single-shot multibox detector (SSD) is adopted to detect objects, and considering the scene complexity, Euclidean cluster is also employed to obtain the objects without being trained by SSD. And then, we acquire the vertical projection of the point cloud for each object. Considering that different objects have different shapes with respective orientation, the vertical projection is executed along its major axis acquired by the principal component analysis. On this basis, the minimum projected envelope rectangle of each object is obtained. To construct continuous potential field functions, an elliptical-based functional representation is introduced due to the better matching degree of the ellipse with the envelope rectangle among continuous closed convex curves. Guided by the design principles, including continuity, same-eccentricity equivalence, and monotonicity, the potential fields based on elliptical cone are designed. The current interference object to be grasped generates an attractive field, whereas other objects correspond to repulsive ones, and their resultant field is used to solve the best placement of the current interference object. The effectiveness of the proposed approach is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document