scholarly journals On sums of degrees of the partial quotients in continued fraction expansions of Laurent series

2011 ◽  
Vol 380 (2) ◽  
pp. 807-813 ◽  
Author(s):  
Mei-Ying Lü ◽  
Bao-Wei Wang ◽  
Jian Xu
2013 ◽  
Vol 09 (05) ◽  
pp. 1237-1247 ◽  
Author(s):  
LUMING SHEN ◽  
JIAN XU ◽  
HUIPING JING

For x ∈ I, let [A1(x), A2(x), …] be the continued fraction expansions over the field of Laurent series, write Ln(x) ≔ max { deg A1(x), deg A2(x), …, deg An(x)}, which is called the largest degree of partial quotients. In this paper, we give an iterated logarithm type theorem for Ln(x), and by which, we get that for P-almost all x ∈ I, [Formula: see text]. Also the Hausdorff dimensions of the related exceptional sets are determined.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2018 ◽  
Vol 61 (1) ◽  
pp. 283-293
Author(s):  
Poj Lertchoosakul ◽  
Radhakrishnan Nair

AbstractLet 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by $$\alpha = A_0(\alpha ) + \displaystyle{1 \over {A_1(\alpha ) + \displaystyle{1 \over {A_2(\alpha ) + \ddots }}}},$$ where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾ 1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have $$\vert A_1(\alpha ) \ldots A_N(\alpha )\vert ^{1/N} = q^{q/(q - 1)} + o(N^{ - 1/2}(\log N)^{3/2 + {\rm \epsilon }})$$ for almost everywhere α with respect to Haar measure.


2009 ◽  
Vol 148 (1) ◽  
pp. 179-192 ◽  
Author(s):  
AI-HUA FAN ◽  
LINGMIN LIAO ◽  
JI-HUA MA

AbstractWe consider sets of real numbers in [0, 1) with prescribed frequencies of partial quotients in their regular continued fraction expansions. It is shown that the Hausdorff dimensions of these sets, always bounded from below by 1/2, are given by a modified variational principle.


Sign in / Sign up

Export Citation Format

Share Document