Existence and multiplicity of positive solutions for Neumann problems involving singularity and critical growth

2018 ◽  
Vol 459 (2) ◽  
pp. 959-979
Author(s):  
Chun-Yu Lei
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Pengfei He ◽  
Hongmin Suo

In this paper, we study the existence of positive solutions for Schrödinger-Poisson systems with sign-changing potential and critical growth. By using the analytic techniques and variational method, the existence and multiplicity of positive solutions are obtained.


2016 ◽  
Vol 8 (1) ◽  
pp. 52-72 ◽  
Author(s):  
Tuhina Mukherjee ◽  
Konijeti Sreenadh

Abstract In this article, we study the following fractional p-Laplacian equation with critical growth and singular non-linearity: (-\Delta_{p})^{s}u=\lambda u^{-q}+u^{\alpha},\quad u>0\quad\text{in }\Omega,% \qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega, where Ω is a bounded domain in {\mathbb{R}^{n}} with smooth boundary {\partial\Omega} , {n>sp} , {s\in(0,1)} , {\lambda>0} , {0<q\leq 1} and {1<p<\alpha+1\leq p^{*}_{s}} . We use variational methods to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter λ.


2009 ◽  
Vol 9 (2) ◽  
Author(s):  
Tsing-San Hsu

AbstractIn this paper, we consider a singular elliptic system with both concave-convex nonlinearities and critical growth terms in bounded domains. The existence and multiplicity results of positive solutions are obtained by variational methods.


2017 ◽  
Vol 6 (3) ◽  
pp. 327-354 ◽  
Author(s):  
Jacques Giacomoni ◽  
Tuhina Mukherjee ◽  
Konijeti Sreenadh

AbstractIn this article, we study the following fractional elliptic equation with critical growth and singular nonlinearity:(-\Delta)^{s}u=u^{-q}+\lambda u^{{2^{*}_{s}}-1},\qquad u>0\quad\text{in }% \Omega,\qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega,where Ω is a bounded domain in {\mathbb{R}^{n}} with smooth boundary {\partial\Omega}, {n>2s}, {s\in(0,1)}, {\lambda>0}, {q>0} and {2^{*}_{s}=\frac{2n}{n-2s}}. We use variational methods to show the existence and multiplicity of positive solutions with respect to the parameter λ.


2009 ◽  
Vol 52 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Claudianor O. Alves ◽  
Daniel C. de Morais Filho ◽  
Marco A. S. Souto

AbstractUsing variational methods, we establish the existence and multiplicity of positive solutions for the following class of problems:where λ,β∈(0,∞), q∈(1,2*−1), 2*=2N/(N−2), N≥3, V,Z:ℝN→ℝ are continuous functions verifying some hypotheses.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


Sign in / Sign up

Export Citation Format

Share Document