scholarly journals Limiting empirical spectral distribution for products of rectangular matrices

2021 ◽  
Vol 502 (2) ◽  
pp. 125237
Author(s):  
Yongcheng Qi ◽  
Hongru Zhao
2017 ◽  
Vol 06 (03) ◽  
pp. 1750011
Author(s):  
Debapratim Banerjee ◽  
Arup Bose

We consider four specific [Formula: see text] sparse patterned random matrices, namely the Symmetric Circulant, Reverse Circulant, Toeplitz and the Hankel matrices. The entries are assumed to be Bernoulli with success probability [Formula: see text] such that [Formula: see text] with [Formula: see text]. We use the moment approach to show that the expected empirical spectral distribution (EESD) converges weakly for all these sparse matrices. Unlike the Sparse Wigner matrices, here the random empirical spectral distribution (ESD) converges weakly to a random distribution. This weak convergence is only in the distribution sense. We give explicit description of the random limits of the ESD for Reverse Circulant and Circulant matrices. As in the non-sparse case, explicit description of the limits appears to be difficult to obtain in the Toeplitz and Hankel cases. We provide some properties of these limits. We then study the behavior of the largest eigenvalue of these matrices. We prove that for the Reverse Circulant and Symmetric Circulant matrices the limit distribution of the largest eigenvalue is a multiple of the Poisson. For Toeplitz and Hankel matrices we show that the non-degenerate limit distribution exists, but again it does not seem to be easy to obtain any explicit description.


2015 ◽  
Vol 17 (04) ◽  
pp. 1550020 ◽  
Author(s):  
Radosław Adamczak ◽  
Djalil Chafaï

We explore the validity of the circular law for random matrices with non-i.i.d. entries. Let M be an n × n random real matrix obeying, as a real random vector, a log-concave isotropic (up to normalization) unconditional law, with mean squared norm equal to n. The entries are uncorrelated and obey a symmetric law of zero mean and variance 1/n. This model allows some dependence and non-equidistribution among the entries, while keeping the special case of i.i.d. standard Gaussian entries, known as the real Ginibre Ensemble. Our main result states that as the dimension n goes to infinity, the empirical spectral distribution of M tends to the uniform law on the unit disc of the complex plane.


2017 ◽  
Vol 06 (03) ◽  
pp. 1750012 ◽  
Author(s):  
Nicholas Cook

We consider random [Formula: see text] matrices of the form [Formula: see text], where [Formula: see text] is the adjacency matrix of a uniform random [Formula: see text]-regular directed graph on [Formula: see text] vertices, with [Formula: see text] for some fixed [Formula: see text], and [Formula: see text] is an [Formula: see text] matrix of i.i.d. centered random variables with unit variance and finite [Formula: see text]th moment (here ∘ denotes the matrix Hadamard product). We show that as [Formula: see text], the empirical spectral distribution of [Formula: see text] converges weakly in probability to the normalized Lebesgue measure on the unit disk.


Bernoulli ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 1538-1574 ◽  
Author(s):  
Zhidong Bai ◽  
Jiang Hu ◽  
Guangming Pan ◽  
Wang Zhou

Sign in / Sign up

Export Citation Format

Share Document