Machinability study and process optimization in face milling of some super alloys with indexable copy face mill inserts

2015 ◽  
Vol 20 ◽  
pp. 88-97 ◽  
Author(s):  
Chandra Nath ◽  
Zachary Brooks ◽  
Thomas R. Kurfess
2019 ◽  
Vol 9 (5) ◽  
pp. 842 ◽  
Author(s):  
Danil Pimenov ◽  
Amauri Hassui ◽  
Szymon Wojciechowski ◽  
Mozammel Mia ◽  
Aristides Magri ◽  
...  

In face milling one of the most important parameters of the process quality is the roughness of the machined surface. In many articles, the influence of cutting regimes on the roughness and cutting forces of face milling is considered. However, during flat face milling with the milling width B lower than the cutter’s diameter D, the influence of such an important parameter as the relative position of the face mill towards the workpiece and the milling kinematics (Up or Down milling) on the cutting force components and the roughness of the machined surface has not been sufficiently studied. At the same time, the values of the cutting force components can vary significantly depending on the relative position of the face mill towards the workpiece, and thus have a different effect on the power expended on the milling process. Having studied this influence, it is possible to formulate useful recommendations for a technologist who creates a technological process using face milling operations. It is possible to choose such a relative position of the face mill and workpiece that will provide the smallest value of the surface roughness obtained by face milling. This paper shows the influence of the relative position of the face mill towards the workpiece and milling kinematics on the components of the cutting forces, the acceleration of the machine spindle in the process of face milling (considering the rotation of the mill for a full revolution), and on the surface roughness obtained by face milling. Practical recommendations on the assignment of the relative position of the face mill towards the workpiece and the milling kinematics are given.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5058-5082
Author(s):  
William Leggate ◽  
Maryam Shirmohammadi ◽  
Robert L. McGavin ◽  
Andrew Outhwaite ◽  
Mark Knackstedt ◽  
...  

The successful manufacturing of glulam from several important Australian commercial timbers is quite challenging due to difficulties in gluing. Improvements in adhesive bond performance of spotted gum, Darwin stringybark, and southern pine timber have been achieved using alternative pre-gluing surface machining methods, e.g., face milling and sanding-post planing, when compared to conventional planing methods. In order to improve the understanding of the effects that different surface machining methods have on adhesive bond performance, this study used micro X-ray computed tomography and microscopy to assess key adhesive bond criteria. There was a considerable loss in the amount of adhesive after the wet and dry test cycles for all species. There was also an extremely high frequency of voids in the glue lines for all species, which would negatively impact bond strength and durability. Face mill prepared timber boards resulted in thicker glue lines and greater resistance to adhesion loss, compared to boards prepared via planing. For the two hardwood species, face milling also resulted in greater adhesive penetration; however, for southern pine, there were no significant differences in adhesive penetration between the three surface machining treatments. Adhesive penetration was much deeper in southern pine compared to spotted gum and Darwin stringybark.


Sign in / Sign up

Export Citation Format

Share Document