Force modeling for 2D freeform grinding with infinitesimal method

2021 ◽  
Vol 70 ◽  
pp. 108-120
Author(s):  
Han Wu ◽  
Zhenqiang Yao
Keyword(s):  
2021 ◽  
Vol 33 (3) ◽  
pp. 037115
Author(s):  
Di Chen ◽  
Kengo Asada ◽  
Satoshi Sekimoto ◽  
Kozo Fujii ◽  
Hiroyuki Nishida

2021 ◽  
Vol 33 (5) ◽  
pp. 053107
Author(s):  
Susanne K. Kugler ◽  
Abrahán Bechara ◽  
Hector Perez ◽  
Camilo Cruz ◽  
Armin Kech ◽  
...  

Author(s):  
Ashwani Pratap ◽  
Karali Patra

Abstract This work presents an analytical cutting force modeling for micro-slot grinding. Contribution of the work lies in the consideration of both primary and secondary tool surface interactions with the work surface as compared to the previous works where only primary tool surface interaction was considered during cutting force modeling. Tool secondary surface interaction with workpiece is divided into two parts: cutting/ ploughing by abrasive grits present in exterior margin of the secondary tool surface and sliding/adhesion by abrasive grits in the inner margins of the secondary tool surface. Orthogonal cutting force model and indentation based fracture model is considered for cutting by both the abrasives of primary tool surface and the abrasives of exterior margin on the secondary surface. Asperity level sliding and adhesion model is adopted to solve the interaction between the workpiece and the interior margin abrasives of secondary tool surface. Experimental measurement of polycrystalline diamond tool surface topography is carried out and surface data is processed with image processing tools to determine the tool surface statistics viz., cutting edge density, grit height distribution and abrasive grit geometrical measures. Micro-slot grinding experiments are carried out on BK7 glass at varying feed rate and axial depths of cut to validate the simulated cutting forces. Simulated cutting forces considering both primary and secondary tool surface interactions are found to be much closer to the experimental cutting forces as compared to the simulated cutting forces considering only primary tool surface interaction.


2018 ◽  
Author(s):  
Akhmad Faizin ◽  
Arif Wahjudi ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono

2019 ◽  
Vol 63 (3) ◽  
pp. 1318-1335 ◽  
Author(s):  
Florian Wöske ◽  
Takahiro Kato ◽  
Benny Rievers ◽  
Meike List

Author(s):  
Benjamin Godard ◽  
Edouard De Jaeghere ◽  
Nabil Ben Nasr ◽  
Julien Marty ◽  
Raphael Barrier ◽  
...  

With the rise of ultra high bypass ratio turbofan and shorter and slimmer inlet geometries compared to classical architectures, designers face new challenges as nacelle and fan design cannot anymore be addressed independently. This paper reviews CFD methods developed to simulate inlet-fan interactions and suitable for industrial design cycles. In addition to the reference isolated fan and nacelle models, the methodologies evaluated in this study consist of two fan modeling approaches, an actuator disc and body-force source terms. The configuration is a modern turbofan with a high bypass ratio under cross-wind. Results are compared to experimental data. As to be predicted, the body-force modeling approach enables early inlet reattachment. In addition, it provides a representative flow deviation across the fan zone which enables performance and stability assessments.


Sign in / Sign up

Export Citation Format

Share Document